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Abstract
Polymers are commonly used as advanced materials that are 
contained in virtually every material used in our everyday lives. 
Due to their applications in various domains of science, technology 
and industry, from basic uses to biopolymers and therapeutic 
polymers, the significance of polymers is steadily increasing. The 
main purpose of this review is to accentuate the pragmatic effect 
of polymers on human everyday life and the significance of waste 
polymers as an important type of solid waste that could be useful 
in various applications such as civilian and construction activities 
and particularly in stabilization and solidification of radioactive waste 
when mixing the polymer waste with cementitious materials, thus 
generating modified composites.
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and encompass a number of structural units linked together by 
chemical bonds. 

The expression “polymers”, a word that we hear a lot about it, is very 
versatile, and without it, one cannot imagine our daily life. Polymers, a 
broad class of materials, are made up of several small molecules called 
monomers, which are joined together to form long chains and are 
used in many of the products and items we use in our everyday lives. 
Since many years, people have used polymers in their all-day lives, 
while the expression “polymer” become familiar to a general public 
only after the Second World War. 

As mentioned above, polymers are formed by the chemical reaction 
of the monomers. Monomers have the ability to react with another 
molecule of the same kind (homo polymerization) or another kind 
(copolymerization) in an acceptable environment to form a polymer 
chain. This mechanism in nature has resulted in the creation of natural 
polymers (biopolymers), while polymeric materials of petrochemical 
origin were anthropogenic; these materials, not present in nature, are 
xenobiotic and not embedded into the natural cycles of carbon [1]. 
While biopolymers have been among us in the natural world since 
the very beginning (e.g. cellulose, starch, natural rubber), man-made 
polymeric materials were researched only since the middle of the 
19th century. Only since the last decades, the polymer technology has 
steadily evolved, and is currently larger than the combined copper, 
steel, aluminium and many other industries [2].

Polymer Types
Natural polymers themselves are a type of polymer produced by all life 
forms (microbes, plants or animals). They encompass, in particular, 
carbohydrates and proteins that exist in plants and animals, and 
provide the organism mainly structural support. Moreover, the group 
of nucleic acids are another class of biopolymers present in all living 
organisms plus in viruses. Polymeric materials such as thermosets, 
plastics and leather can be obtained from such natural materials. This 
applies to polymers that are produced by extraction through their 
bulk form by nature, e.g. cellulose or silicates derived from woods 
and other plants. Moreover, biopolymers include polymers formed 
by biological processes, such as bacterial synthesis or fermentation. 
As polymeric materials, natural polymers can be grouped as addition 
and condensation polymers on the basis of their biosynthesis process. 
The majority of natural polymers are condensation polymers created 
as part of monomeric units which combine to form a small molecule 
(usually water) a by-product. Important examples of such biopolymers 
with plastic-like properties are microbial polyhydroxyalkanoate 
polyesters, generated by the poly condensation of acyl-CoA units in 
living cells, accompanied by the release of free CoA [3]. In contrast, 
addition polymers are those generated by a direct combination of 
the monomers that make up the polymer without any by-product 
formation [4].

Polymer Waste
The mass processing of polymer products, in particular synthetic, 
non-biodegradable fabrics, and their widespread use, based on the 
intrinsic disadvantages (recalcitrance towards biodegradation and 
composting), make these materials a danger to life on Earth. Polymer 

Introduction
Relatively few basic types of materials are available for the 
manufacture of various articles nowadays required by the modern 
society. Steel, glass, wood, stone, brick and concrete were heavily used 
for construction industry, while the manufacture clothing and other 
textiles typically resorts to the use of cotton, wood, jute and a few 
other agricultural products. During the last decades, new materials 
were introduced by the rapid rise in demand for manufactured goods 
with tailored properties. These new materials, mainly polymers 
of petrochemical origin, and their effect on our current way of life 
are indeed manifold. Products made of polymers are omnipresent 
around us: clothing made of synthetic fabrics (microfiber fleeces), 
polyethylene cups, fiberglass, nylon bearings, plastic bags, polymer-
based paints, epoxy glue, polyurethane foam pillows, silicone blood 
vessels and Teflon-coated kitchen equipment are just a few examples 
for the wide utilization of polymeric products from petro chemistry. 

Identification of Polymer
The list is almost infinite. The word "polymer" or sometimes 
"macromolecule" is derived from the classical Greek word “poly”, 
meaning "many" and indicating "many pieces". Polymer molecules 
have a very high molecular weight (between 10000-1000000 g/mole) 
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recycling is known to be one of the most commonly recognized 
solutions for the danger caused by the high quantities of plastic waste 
from both the public and scientists. In reality, recycling is correlated 
with many challenges, such as issues relating to isolation, processing 
and cleaning activities, lack of fiscal incentives, volatility of limited 
garbage isolation schemes, high transport and energy costs, quality 
reduction after each recycling run, etc. Only about 9% of all plastics 
currently produced undergo recycling, the rest (12%) being simply 
incinerated for energy production, or even disposed in landfills or in 
the environment (79%) [5]. Still, a wide segment of society and the 
government believe in the need and value of recycling to protect the 
atmosphere and natural ecosystems and services for better future in a 
sustainable way by recycling raw materials and minimize energy use, 
urban waste disposal production and emissions. Different strategies 
to enhance recycling processes are almost infinite in them and require 
a number of methods, such as restoration, mechanical remodelling, 
chemical treatment, thermal application, etc. Some innovative 
methods, such as carbon capture or carbon nanostructure synthesis 
from plastic waste, are among the latest process technologies for 
recycling. Among different conventional and successful approaches 
to the use of polymer waste, this analysis will highlight novel, effective 
strategies to reduce the environmental effects of plastic waste, 
combined with mitigation or other hazardous waste streams [6].

Mixtures of Polymeric Wastes with Other Wastes
In order to enhance the properties of asphalt mixtures and reduce the 
harmful effects of waste materials on nature and the environment, 
it seems appropriate to introduce a way of reusing waste materials 
in infrastructure and commercial building projects such as road 
pavements

Wheel monitoring, moisture susceptibility, durable modulus and 
drainage experiments were carried out on mixtures comprising 
different percentages of PET waste as 0, 2, 4, 6, 8 and 10% of bitumen 
material. By experimentation, the appropriate range for the volume 
of PET waste was calculated to be 4-6 % by weight of the bitumen 
material. The findings suggest that the addition of PET waste to the 
mixture has a major positive impact on the properties of SMA, which 
may boost the resilience of the mixture to irreversible deformation, 
increase the stiffness of the mixture, decrease the leakage of the binder 
and encourage the reuse and recycling of waste materials in a more 
effective and value-adding manner [7].

Mechanical recycling transforms polymer waste into new polymer 
goods through the energy recovery process, which releases the energy 
chemically stored in plastics by combustion, and chemical processing 
turns waste polymers into raw materials for the manufacture of 
chemicals/monomers/fuels. Today, the chemical processing of plastic 
waste is the most notable method for the reuse of polymers. A review 
provides a literature analysis of the chemical processing processes of 
various polymers, such as Polyethylene (PE); Low-Density PE (LDPE) 
or High-Density PE (HDPE), Poly Propylene (PP), or mixtures of 
these polymers, PET, polycarbonate, and polyurethane. The effect of 
the reaction parameters on the materials collected, the catalysts and 
agents used and the equipment used for various chemical recycling 
methods have been reviewed to summarize the state-of-the-art 
approaches for the chemical processing of diverse polymers [8].

Degradation of Polymers
The catalytic degradation of polyethylene into fuel oils and of 
polystyrene into styrene monomer has been researched using strong 

acids and bases as catalysts. Solid acids such as silica-aluminas and 
ZSM-5 zeolite have been found to be efficient in degrading waste 
polyethylene into fuel oils, and solid bases such as BaO and K2O have 
been found to be successful in turning waste polystyrene into styrene 
monomer. The nature of the recyclable polystyrene film will be briefly 
listed [9]. Sub-or super-critical liquids have used as reaction media 
for environmental applications according to the twelve principles 
of green chemistry [10]. Chemical waste plastics disposal is indeed 
an important problem. Reaction of polymers in water or organic 
solvents in sub-or super-critical conditions to transform polymers to 
their monomers has been evaluated. Simple polymers such as PET 
or nylon 6 have been transferred to their monomers by hydrolysis in 
supercritical water or alcohol. Some polymers such as phenol resins 
and Fiber Reinforced Plastics (FRP) have also been decomposed into 
small molecules by solvent examination [11].

Degradation of Polystyrene
Five degradation models of varying complexity have been created. 
For all models, conversion between species was represented using 
standard free radical reactions, including hydrolysis, mid-chain 
β-scission, end-chain β-scission, 1,5-hydrogen, radical & conjugation 
attachment, bond nuclear fusion, and disproportionation. The five 
models varied in their resolution of the structural characteristics of 
the "dead" and "still" polymeric species and whether they directly 
tracked low molecular weight species. The most detailed model 
involved over 4500 reactions and recorded 93 species of polymeric 
and low molecular weight nature, both dead and active. Programs 
have been built using the Perl programming language to assemble 
population balance equations from unique response mechanism 
feedback to boost model development [12].

Composite of Polymers and other Materials with Ce-
ment
Human activities usually increase the production of solid waste, such 
as plastic waste. The management of such wastes is typically a concern. 
The goal of this illustration was to explore the feasibility of using plastic 
and egg shell waste along with cement in the manufacture of floor tiles. 
Waste was obtained from kitchens and waste disposal facilities. The 
products were washed and dried, and the plastics shredded while the 
egg shells were broken. Waste products were then combined in varying 
amounts with white cement. Compressive strength experiments were 
carried out to assess the suitability of using such solid waste in the 
manufacture of floor tiles. Crushed egg shells going through a sieve of 
1.2 mm and shredded plastics with an average diameter of 1 to 2 mm 
were used. Cubes were casted and cured for 28 days. The compressive 
strength of the cubes was tested using a universal testing unit. The 
study showed that up to 50% of applied cement resulted in a more 
than 10-fold improvement in the compressive power of the casting 
cubes. The inclusion of plastics improved the compressive strength 
of the cubes while the inclusion of egg shells had a negligible effect 
on the compressive strength. Increased amounts of plastics and egg 
shells resulted in increased water absorption, while greater amounts 
of cement resulted in decreased water absorption. The growth in the 
quantity of egg shells and plastics resulted in a decreased density. In 
the presence of plastics, the resistance to abrasion grew and the tiles 
became less delicate. It is concluded that egg shells can potentially be 
used as filling material for the manufacturing of floor tiles. Owing to 
the ability of plastics to reduce the compressive strength of the tiles, 
they should be used with caution. The study has shown that the use 
of plastic and egg shell waste in the manufacturing of floor tiles is a 
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feasible alternative for minimizing waste. However, more studies are 
required to evaluate the chemical interactions involved in floor tile 
production systems where household and industrial waste, such as 
plastics and egg shells are used [13]

Light Concrete from Expanded Polystyrene 
Expanded polystyrene waste in granular form is used as a lightweight 
aggregate to manufacture lightweight reinforced concrete with a 
unit weight ranging from 1600 to 2000 kg/m3. Polystyrene aggregate 
concrete was developed by partly replacing the coarse aggregate in 
the reference (normal weight) concrete mixtures with the same 
amount of the chemically coated crushed polystyrene granules. The 
gross aggregate substitution rate used was 30, 50 and 70%. Results of 
experimental study of engineering properties, such as compressive 
power, elasticity modulus, shrinkage and creep drying, of polystyrene 
reinforced the concrete variations in density. The key objectives of this 
analysis were the effect of density and cement paste composition on 
the above described properties. The density of concrete mixture for 
the concrete mixes used was 410 and 540 kg/m3.

Experimental findings revealed an improvement in the shrinkage and 
slipping of polystyrene reinforced concrete, while the compressive 
strength and elasticity modulus improved with a decline in the 
density of concrete. The compressive power was observed to be 
more adaptive to density than the elasticity modulus [14]. Crumbled 
recycled foam polystyrene waste, as well as a broad spherical and fine 
blown polystyrene waste, is used to create filler for a light thermo-
isolating composite, the matrix of which is light foam cement. These 
fillers are hydrophilic with a surfactant foam solution for greater 
cohesion. Polystyrene granules and foam concrete contact systems are 
discussed. The examination of foam cement concrete and polystyrene 
granule impact zone found that the interaction between these two 
products was very similar, without any fractures or micro cracks. The 
adhesion of the two materials depends on the size and form of the 
granules used. The 'gap' that has formed almost repeats the shape of 
the granule when a polystyrene granule is torn from foam concrete 
and polystyrene debris is left in it. This is evidenced by the fact that 
the foam concrete impact zone is thicker than the polystyrene granule 
content. When PS granules are included, they disintegrate along the 
touch region. Such a composite has the lowest adhesion strength 
but is smoother compared to a composite made of different foam 
polystyrene granules, supported with greater macrostructure [15].

Lightweight concrete can be created by replacing the usual concrete 
with a recycled aggregate, either partially or entirely, depending on the 
density and strength specifications. The present research involves the 
use of Extended Polystyrene (EPS) beads as a lightweight aggregate 
in both concrete and mortars containing silica smoke as an external 
cement material. The key goal of this project is to research the quality 
and reliability of the EPS concrete. These mixtures were constructed 
using the quality of the silica smoke at various percentages. The 
resulting concretes were found to have densities ranging from 1500 
to 2000 kg/m3, with corresponding strengths ranging from 10 to 21 
MPa. The increase in strength of these concretes indicates that the 
improvement in the amount of silica smoke raises the strength of 7 
days. This has been Approximately 75, 85 and 95 % of the correlating 
28-day strength were observed at the silica smoke replacement levels 
of 3, 5 and 9 %, respectively. Results of absorption at 30 min and final 
absorption show that EPS sand mixtures have lower absorption levels 
compared to mixtures containing normal aggregates. In addition, 
absorption levels have been shown to decrease with an increase in 

cement content. The efficiency of these concrete in terms of chloride 
permeability and corrosion resistance, also at a low level of silica 
smoke, has been shown to be very strong [16].

Characteristics of Structural Inner-Compacted Lightweight Concrete 
(SCLC) including Extended Polystyrene (EPS) measured by slump 
flow, T50, V-funnel and L-box measurements. Fifteen mixtures 
including various water / binder ratios (W/B), nano-SiO2 contents 
and EPS percentages (10, 15, 22.5 and 30 % by volume) were planned. 
The improvement in slump flow by hauling time was also analyzed 
and forecast with multiple regression equations. The findings suggest 
that mixtures with a density of more than 1900 kg/m3 have some 
detrimental effects on fresh Self-Compressed Concrete (SCC) but this 
is to be less for EPS mixtures. Although the EPS-containing SCLC 
slump decreased by up to 6% by reducing the W/B ratio, T50 and 
V-funnel times rose by 23-29% and 18-48% respectively. The use of EPS 
in SCC indicates an improvement of up to 17% in slump preservation. 
In addition, with the use of nonlinear multiple regressions, the slump 
flow with transport time can be correct predicted [17].

In this analysis, thermally modified waste EPS foams were used as 
aggregates. Upgraded waste extended polystyrene aggregates (MEPS) 
were obtained by heat treatment by holding waste EPS foams in the hot 
air furnace at 130ºC for 15 min. Effects of MEPS aggregate on many 
properties of concrete have been examined. Six series of concrete 
samples have been prepared for this purpose. MEPS aggregate was 
used to supplement the natural aggregate at amounts of 0, 25, 50, 
75 and 100% by volume. The density of MEPS is by far smaller than 
that of natural aggregate; MEPS concrete becomes a lightweight 
concrete with a density of approximately 900–1,700 kg/m. The 28-d 
compressive strength of MEPS concrete ranges from 12.58 to 23.34 
MPa, which satisfies the strength requirement for lightweight semi-
structural concrete. Effects of MEPS aggregate on many properties 
of concrete have been examined. Six series of concrete samples 
have been prepared for this purpose. MEPS aggregate was used to 
supplement the natural aggregate at amounts of (0, 25, 50, 75 and 100 
%) by volume. The density of MEPS is far smaller than that of natural 
aggregate; MEPS concrete becomes a lightweight concrete with a 
density of approximately 900-1,700 kg/m3. The 28-d compression 
strength of MEPS concrete varies from 12.58 to 23.34 MPa, which fits 
the strength criteria of sub-structural lightweight concrete [18].

Recently, sustainable composite from cement kiln dust with grated 
poly (styrene) has been improved to produce lightweight concrete 
[19].

Application of polymer wastes with cement in radioac-
tive waste immobilization
According to the toxicity of radionuclides in environment, treatment 
and immobilization of radioactive waste is most important [20-
26]. Radioactive borate waste simulating to that produced from 
Pressurized Water Reactors (PWR) has been prepared and solidified 
after mixing with cement-water extended polyester composite. This 
composite was prepared from recycled PET waste and cement paste 
(water/cement ratio of 40%) and subjected to leach tests for both 
137Cs and 60Co radionuclides according to the method proposed by 
the International Atomic Energy Agency (IAEA). The obtained data 
after 260 days of leaching revealed that after aging are characterized 
by adequate chemical stability required for the long-term disposal 
process. The proposed combination of cement with water extended 
polyester based on recycled Poly Ethylene Terephthalate (PET), is 
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acceptable for immobilization of radioactive borate waste, performs 
adequately in the final disposal site and permits some secure against 
the radionuclides back release through the leaching process [27-29].

Cellulose as a natural polymer has been utilized with cement to 
produce cementitious composites favourable for stabilization of 
radioactive wastes. Due to the increasing amounts of spinning 
waste fibres generated from cotton fabrication and the simultaneous 
shortage in the landfill disposal space with dumping of these wastes, 
cement mortar composite was developed by hydrating mortar 
components using the waste slurry obtained from wet oxidative 
degradation of these spinney wastes. The produced cement mortar 
composite exhibits acceptable resistance and durability against the 
freeze-thaw and immersion that could be chosen in radioactive waste 
immobilization and constructive applications [30-32].

Another type of polymer waste, namely recycled post-consumer PS 
foam waste, was mixed with cement to produce cement-polymer 
composite. Radioactive sulfate wastes are generated from Boiling 
Water Reactors (BWRs) and should be immobilized before their dis-
posing to avoid the back release of their hazardous components. A 
cement-polymer composite formulated from recycled post-consumer 
polystyrene foam waste and Portland cement was proposed as an 
incorporating matrix for solidification/stabilization (S/S) of sulfate 
waste simulates [33].
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