
a S c i T e c h n o l j o u r n a lResearch Article

Dandu et al., J Nucl Ene Sci Power Generat Technol 2021, 10:9
Journal of Nuclear

Energy Science & Power
Generation Technology

All articles published in Journal of Nuclear Energy Science & Power Generation Technology are the property of SciTechnol,
and is protected by copyright laws. Copyright © 2021, SciTechnol, All Rights Reserved.International Publisher of Science,

Technology and Medicine

*Corresponding author: Sujatha Dandu, Professor, School of Computer Science,
VIT-AP University, G-30, Inavolu, Beside AP Secretariat, Amravati, Andhra
Pradesh-522237, India, E-mail id: sujatha.d@vitap.ac.in

Received date: August 31, 2021 Accepted date: September 15, 2021

Published date: September 22, 2021

Practical Approach to the Defect
Prediction Model for Software
Testing
Sujatha Dandu1*, Kiranmai Rage2, M Sundar Raj3, Nilamadhab
Mishra4, D Sivakumar5 and S Mohan6

Abstract
The forecast for software vulnerabilities seeks to decrease test
automation expenditures by leading users to default enterprise
software categorization. In so many businesses, defect predictors
are frequently used to prevent software defects to save time,
improve quality, testing, and improve resource allocation to meet
schedules. The implementation of statistical package deficiency
prediction models in everyday life is highly challenging, as a result
of the need to anticipate the following release or newer better
types of projects with far more different data and measurements
and also previous fault information. In this study, our quantitative
technique demonstrates how the faults for recent software versions
or undertakings are properly predicted. We utilized 20 software
development releases datasets, 5 variables and constructed a
model using summary analysis, correlations, and various linear
models with a confidence level of 95% (CI). The R-square value
was 0.91 and its standard deviation is 5.90% in this suitable multiple
linear regression analysis. The deficiency model for software tests
is being used to anticipate problems in numerous test programs
and commercial deployments. Comparing actual and the predicted
faults, we discovered 90.76% accuracy.

Keywords: Software deficiency; Linear regression analysis;
Quality; Prediction faults

Introduction
Numerous simulated results of software defects have been created
during the last 30 years. The requirement for release/project improved
defects prediction models in computer inspection organizations. It is
a major difficulty to anticipate errors in designs that were developed.
Project management organizations, by forecasting the flaws,
attempt to make effective strategies to improve design and planning
procedures. Companies are investing enormous sums on resources for
enterprise software tests to determine flaws. If we can use a model to
forecast launch faults, the time variance can be minimized and service
quality is great. The assessment of several software components in [1-
3] has been provided. A Project Manager who has to pick between
these possibilities is of little assistance to statistically-based models of
software defects [4].

If detected and corrected at later stages of secure development cycles
or during manufacturing [5], software errors are more costly. Tests

are therefore one of the most essential, time-consuming phases of
the software development cycle and represent 50% of the overall
development costs. In addition to helping programmers assess the
quality and predisposition of a computer product [6], problem predicts
improve the efficiency of a testing stage. Managers can also assist in
distributing resources. Mast prediction models combine well-known
reference models and real defect rates, and use such approaches with
the faulty information in terms of training data, as well as statistics
[7-9], artificial intelligence [10-13], to understand which modules are
susceptible to defects.

A recent study on defect forecasting reveals that AI-based fault
predictors can discover [14] 70% in the median of flaws in a software
system [15,16]. Manual code reviews can find around 35% and
60% of faults. A handful of writers such as [17-19] recently adopted
software engineering approaches for linear regression. This is used
by project managers, in particular, to determine when and where
to end the testing and release of the software, pricing the period to
check additionally against the anticipated benefits, to prevent a lot of
technology flaws from being found after testing [20].

Objective

Deficiency prediction enhances the effectiveness of an assessment
process and helps programmers analyze their software device’s
reliability and fault proneness. Assist management in resource
allocation, reprogramming, training programs, and overall budget. (a)
Funds may efficiently be increased or depleted, (b) Job and taught and
training could be filled. Depending on quality assessment; anticipates
faulty manufacturing leaks.

Methodology

The purpose of this article is the forecast system testing faults using
predictive models as well as the prevention model’s effectiveness.
We will use past data and their measurements to assess the ability
of statistical models to identify the number of faults. We evaluate
the correlation between the number of faults and the classifiers to
determine the best forecasters in the 18 variable packages provided.
Then we use more complex statistical methods to handle the standard
deviation of the input variables and previous data and monitor
multichannel variables.

Parametric parameters of the target factor have been the principal
variables we investigated. As just a consequence, we utilized data of
20 dev kits that are linked to the influential factors. The generalized
multilinear regression parameters are initially calculated by utilizing
the least quadratic technique (OLS). If the failure distribution is
considered to be standard, the use of the OLS technique to adjust the
variables of the generalized multiple linear regressions is acceptable.
The maximum probability estimation (ML) of β is quite close to that
for the nonlinear [21-27] theory throughout this situation. To estimate
the fault that uses these five predictors with correlations, we utilize the
Multiple Linear Regression (MLR). Analysis and multiple regression
analysis for both the detection of potential faults are used in predictive
analytics.

 Y=β0+βI X1+β2 X2+β3 X3+β4 X4+....................+βn Xn

Where Y=Dependent parameter (Defects),

Citation: Dandu S, Rage K, Raj MS, Mishra N, Sivakumar D, et al., (2021) Practical Approach to the Defect Prediction Model for Software Testing. J
Nucl Ene Sci Power Generat Techno 10:9.

• Page 2 of 4 •Volume 10 • Issue 9 • 1000213

β1, β2, β3, βn Coefficient values and X1, X1, X1, X1,.... X1 are
independent parameters (Total number of test cases executed, Test
team size, Allocated development effort., Test case execution effort
and Total number of components delivered).

Results and Discussion
Researchers determined the total number of test cases, the size of the
test series, the assigned testing cost, the test case execution hard work
and the overall number of Computer data elements out of twenty
Doing all quantities supplied are data points and predictor variables
is the number of faults. Given past data and experience, we have
identified dependent factors. In several of our initiatives, we have
followed the very same process. The overall number of faults is directly
related and depends on the total number of successful instances. The
probability of faults being high when the number of known cases is
large and important to objectives. This is one of the parameters that
have a major influence. The two metrics are strongly correlated. The
amount of launch software faults is inversely proportional to the
quality of the test team. If the number of the test crew is larger, then
there is a significant likelihood of faults.

A variety of statistical download faults is measured relative to the test
effort assigned. If the test time allotted for the component is increased,
developers can only identify more problems in the testing phase,
and fault leaking in the next step is reduced. It was one of the strong
parameters that affect the number of faults negatively. If the testing
work of the assigned unit is minimal, the chance of faults during the
testing phase is quite high. The number of software launch deficiencies
is approximately equal to the running of the testing ground. The risk of
faults is increased if the legal test running cost is greater. The amount
of launch faults is dependent on the number of complete immediately
prepared. If the number of parts supplied is higher, the likelihood is
high.

Different writers also utilized different kinds of metrics in literature
such as KLOC for computer models, whereas this was employed for
basic regress of the lines. The connection between faults was significant.
Of the 20 releases, 28 were the average fault and 16 were the confidence
interval, while 264 have been the average number of test cases. The
ratio of test cases carried out and the rate of faults is 9:1. The unit
produced test effort assigned was 433 and SD is 226, the coefficient of
determination is 0,2441, but the connection isn’t substantial at 0,05.
This implies that there were no problems linked to it. The correlation
coefficient for monitoring application is employed most commonly for
the calculation of correlations and their importance, except normalcy
in the distributions of the analyzed variables. Since our variables were
properly divided per our statistical predictions. It was followed by the
total number of supplied parts (i.e. 0.6485 (p<0.01) and the result is
a very discrepancy between the magnitude of defects and that of the
top order (Table 1).

Table 1: Mean and SD of model conditions.

Multiple Linear
Regression
(MLR)

Coefficients
values

Standard Error
(SE)

Siginificant
P-value

Intercept -5.36813 5.61756 p>0.05
Total number
of test cases
executed (#)

0.019694 0.013713 p>0.05

Test team size(#) 6.238706 0.91904 p<0.01

Allocated unit
testing effort
(%)

-0.02611 0.007791 p<0.01

Test case
execution effort
(%)

-0.07895 0.013876 p<0.01

Total number
of components
delivered (#)

-0.15725 0.324758 p>0.05

The correlation coefficients with β values both positively and negatively
in multiple linear regression analysis and their regression coefficients
were small. Amount of completed tests, size of the test squad, assigned
unit test effort, running a case study, and a total amount of material.
We have only notably seen a test match size of 0.05 (Table 2).

Table 2: Influencing factors of MLR.

Parameter Mean Standard Correlation P-value
Total
number of
test cases
executed (#)

264 169 0.5425 p<0.05

Test team
size (#) 10 4 0.7665 p<0.01

Allocated
unit testing
effort (hrs)

433 226 0.2441 p>0.05

Tast case
execution
effort (hrs)

252 188 0.0593 p>0.01

Total
number of
components
delivered (#)

11 11 0.6485 p<0.01

Number of
defects (#) 28 16 _ _

The real and projected flaws appear to be graphically represented; R1
and R2 versions vary beyond expected and actual faults. Although
adjacent to R3 to R15 was identical, there’s no difference between the
line graphs. The following five releases data point will appear in the
various numerical prediction model and a variety of fault foundations
will be provided based on liberation needs (Graph 1).

Researchers additionally utilized the r-square analysis of variances
(ANOVA), which implies that 91 percent of both the defect variations
are related to the predictor variables and that the predictive model
coefficients of both the determination are 0.91. The F-ratio is 26.37
(p<0.01), extremely important at 0.01.

In this classification algorithm, the default error (SE) of 5.90% was
quite low. With the same patterns and their accuracy, we compare the
real faults and predicted errors with 90.76% of the figures. For model
validation, researchers employed experimental work. We thought that
uniformity, standard deviation following by mistakes were continuous.

Citation: Dandu S, Rage K, Raj MS, Mishra N, Sivakumar D, et al., (2021) Practical Approach to the Defect Prediction Model for Software Testing. J
Nucl Ene Sci Power Generat Techno 10:9.

• Page 3 of 4 •Volume 10 • Issue 9 • 1000213

Graph 1: Comparison of the trend pattern. .

Conclusion
A comprehensive history of software releases was studied to discover
factors that influence fault predictive models variables. Designers
identified substantial links among errors and the size of the test
series, absolute numbers of completed data sets, and total numbers
of deliverables. In this study, the software faults are estimated using
multiple linear regression analyses. The common challenges in
detecting and influencing factors and metrics such as information
unreliable and heterogeneous are accounted for with these systems.
Such models typically provide a strong prediction for future software
failures and quality improvement. The team leader has pointed out
the following factors that require monitoring and improvement of the
testing and development process through the use of the predictive
model. The R-square value was 0.91 (91%), and that was very
important at 0.01 and a low-grade error (SE) of 5.90%.

Depending on its prediction performance, we measured our analysis
and found that 84 percent of defects may be detected using a flaw
prediction.

We are going to proceed with:

• Continue the study by examining the influence on the percentage
of the defect kinds of the various types of methods.

• Improve the scope to forecast the index of deficiency severity
(DSI).

• Apply the analysis to anticipate the leak fault to or from the
following stages of the manufacturing.

• Updating the concept to include in manufacturing a choice.

• Extension of the strategy utilizing modern statistical methods
using the findings of the current research.

• Validation of the concept about historic data and software
development constraints.

References
1. Boraso M, Montangero C, Sedehi H (1996) Software cost estimation: An

experimental study of model performances, tech. the report.

2. Menzies T, Port D, Chen Z, Hihn J, Stukes S (2005) Validation methods
for calibrating software effort models in ICSE 05: Proceedings of the 27th
international conference on software Engineering. pp: 587–595.

3. Benediktsson O, Dalcher D, Reed K, Woodman M (2003) COCOMO based
effort estimation for iterative and incremental software development . Software
Qual J 11: 265–281.

4. Fenton NE, Neil MA (1999) Critique of software defect prediction models.
IEEE Trans Softw Eng 25: 675-689.

5. Brooks A (1995) The mythical man-month: Essays on software engineering.
Addison-Wesley Eds.

6. Neil M, Krause P, Fenton NE (2003) Software quality prediction using
Bayesian networks in software engineering with computational intelligence,
(Ed Khoshgoftaar TM), Kluwer.

7. Nagappan N, Ball T, Murphy B (2006) Using historical in-process and
product metrics for early estimation of software failures, In proceedings of
the international symposium on software reliability engineering. NC pp: 16-21

8. Deepthi T, Balamurugan K, Uthayakumar M (2021) Simulation and
experimental analysis on cast metal runs behaviour rate at different gating
models. IJESMS 12:156-64.

9. Devaraj S, Malkapuram R, Singaravel B (2021) Performance analysis of
micro textured cutting insert design parameters on machining of Al-MMC in
turning process. Int J Lightweight Mater Manuf 4: 210-217.

10. Garigipati RK, Malkapuram R (2020) Characterization of novel composites
from polybenzoxazine and granite powder. SN Applied Sciences 2: 1-9.

11. Yarlagaddaa J, Malkapuram R (2020) Influence of carbon nanotubes/
graphene nanoparticles on the mechanical and morphological properties of
glass woven fabric epoxy composites. INCAS Bull 12: 209-218.

12. Rama Krishna M, Tej Kumar KR, DurgaSukumar G (2018) Antireflection
nanocomposite coating on PV panel to improve power at maximum power
point. Energ Source Part A 40: 2407-2414.

13. Yarlagaddaa J, Malkapuram R, Balamurugan K (2021) Machining studies on
various ply orientations of glass fiber composite. In Advances in Industrial
Automation and Smart Manufacturing. pp: 753-769.

14. Ezhilarasi TP, Kumar NS, Latchoumi TP, Balayesu N (2021) A secure data
sharing using IDSS CP-ABE in cloud storage. In Advances in Industrial
Automation and Smart Manufacturing. pp: 1073-1085.

15. Mishra P, Jimmy L, Ogunmola GA, Phu TV, Jayanthiladevi A, et al. (2020)
Hydroponics cultivation using real time iot measurement system. J Phys Conf
Ser Series 1712: 012-040.

16. Sridharan K, Sivakumar P (2018) A systematic review on techniques of feature
selection and classification for text mining. Int J Bus Inf Syst 28: 504-518.

17. Vemuri RK, Reddy PCS, Kumar BP, Ravi J, Sharma S, et al. (2021) Deep
learning based remote sensing technique for environmental parameter
retrieval and data fusion from physical models. Arab J Geosci 14: 1-10.

18. Fan, Chin-Feng, Yu, Yuan-Chang (2004) BBN-based software project risk
management, J Systems Software 73: 193-203.

19. Stamlosa I, Angelisa L, Dimoua P, Sakellaris P (2003) On the use of Bayesian
belief networks for the prediction of software productivity information and
software tech 45: 51-60.

20. Fenton NE, Krause P, Neil M (2002) Software measurement: uncertainty and
causal modeling. IEEE Softw 10:116-122.

21. Fenton NE, Neil MA (1999) Critique of software defect prediction models.
IEEE Trans Softw Eng 25: 675-689.

22. Cameron AC, Trivedi PK (1986) Econometrics models based on count data:
comparisons and applications of some estimators and tests. J Appl Econom
1: 29-93.

23. Lambert D Zero (1990) Inflated Poisson regression with an application to
defects in manufacturing, Technimetrics 34: 1-14.

Citation: Dandu S, Rage K, Sundar Raj M, Mishra N, Sivakumar D, et al., (2021) Practical Approach to the Defect Prediction Model for Software Testing. J
Nucl Ene Sci Power Generat Techno 10:9.

• Page 4 of 4 •Volume 10 • Issue 9 • 1000213

24. Long JS (1997) Regression models for categorical and limited dependent
variables. Advanced Quantitative Techniques in the Social Sciences, Sage
Publications. pp: 7.

25. Graves T, Karr AF, Marron JS, Siy H (2000) Predicting fault incidence using
software change history. IEEE T Software Eng 10; 219-610.

Author Affiliations Top

1School of Computer Science, VIT-AP University, G-30, Inavolu, Amravati,
Andhra Pradesh
2Department of Computer Science and Engineering, BV Raju Institute of
Technology, Narsapur, Telangana, India
3Department of Mathematics, Panimalar Engineering College, Poonamallee,
Chennai
4School of Computing Science and Engineering, VIT Bhopal University,
Madhya Pradesh, India
5Department of Computer Science and Engineering, Kings College of
Engineering, Thanjavur, India
6Kalasalingam Academy of Research and Education, Krishnankoil,
Virudhunagar, India

Submit your next manuscript and get advantages of SciTechnol
submissions

 � 80 Journals
 � 21 Day rapid review process
 � 3000 Editorial team
 � 5 Million readers
 � More than 5000
 � Quality and quick review processing through Editorial Manager System

Submit your next manuscript at ● www.scitechnol.com/submission

26. Stamelosa I, Angelisa L, Dimoua P, Sakellaris P (2003) On the use of Bayesian
belief networks for the prediction of software productivity information and
software tech 45: 51-60.

27. Shaik NU, Rao BK, Raghav B (2010) Software defect prediction model: A
statistical approach, software testing conference (STC-2010), 10th annual
international software testing conference in India pp: 22-23.

