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Abstract

The effectiveness of Earth Pressure Balance (EPB) and Tunnel 
Boring Machines (TBMs) in urban underground construction 
relies on understanding and optimizing their performance under 
variable geotechnical conditions. This study investigates the key 
parameters impacting TBM efficiency during the construction 
of the Jakarta Mass Rapid Transit (MRT) Underground Section 
CP106. 

Data from TBM operation were analyzed using statistical and 
machine learning techniques, including Mutual Information (MI), 
Partial Dependence Plots (PDP) Analysis of Variance (ANOVA), 
to identify influential parameters such as tensile strength, uniaxial 
strength, spacing penetration. 

Predictive models, including gradient boosting regressor, random 
forest regressor linear regression, were evaluated based on error 
metrics and R-squared values, with gradient boosting regressor 
showing the highest predictive accuracy. Clustering analyses 
using K-Means and Principal Component Analysis (PCA) further 
classified operational states, identifying conditions that optimize 
energy efficiency and reduce mechanical wear. The findings 
suggest that TBM configurations with lower specific energy, 
normal force rolling force contribute to more efficient, less force-
intensive tunneling. These insights provide a basis for refining 
TBM operations and predictive modeling in urban tunneling 
projects.

Keywords: TBM performance; Earth pressure balance; Mutual 
information; Gradient boosting regressor; ANOVA; K-Means 
clustering

Introduction 
The construction of urban transportation infrastructure, especially 

underground transit systems, poses considerable engineering 
challenges due to the complex interactions between tunneling 
equipment, geotechnical properties the constraints of densely 
populated environments [1]. The Jakarta Mass Rapid Transit (MRT) 
project is a significant initiative aimed at reducing severe urban 
congestion in Indonesia’s capital city [2]. 

As part of this extensive project, the construction of the 
underground section CP106 has necessitated the deployment of 
advanced engineering methods, particularly Earth Pressure Balance 
(EPB) Tunnel Boring Machines (TBMs) [3,4]. EPB, TBMs are 
widely recognized for their capability to maintain face stability by 
balancing excavation pressures, which is important in urban areas with 
variable soil compositions and delicate structural surroundings [5,6] 
However, optimizing the performance of TBMs remains essential 
due to the heterogeneity of soil conditions, the need to minimize 
energy consumption the imperative to reduce mechanical wear and 
environmental impact.

To address these operational demands, this study analyzes the 
mechanical and operational parameters that significantly influence 
TBM performance, including tensile strength, uniaxial strength, 
spacing, cutter diameter, tip width penetration. Through statistical 
and machine learning methodologies such as Mutual Information 
(MI) analysis, Partial Dependence Plots (PDP) Analysis of Variance 
(ANOVA), this research aims to identify the key parameters affecting 
TBM efficiency and to develop predictive models for excavation 
outcomes under varying conditions. 

Additionally, clustering techniques like K-Means and Principal 
Component Analysis (PCA) are employed to classify operational 
states, providing understandings into optimal configurations that 
could enhance tunneling efficiency under different geotechnical 
conditions.

This research contributes to TBM optimization by identifying 
the parameters most important to performance and by developing 
predictive models that support engineering decision making during 
urban tunneling projects. By applying these advanced analytical 
techniques, this study seeks to enhance the efficiency, safety 
sustainability of underground transit construction, providing insights 
that are applicable to both the Jakarta MRT project and other large 
scale urban infrastructure developments worldwide.

Materials and Methods
This study focuses on analyzing the performance of Earth 

Pressure Balance (EPB) Tunnel Boring Machines (TBMs) during the 
construction of the Underground Section CP106 of the Jakarta Mass 
Rapid Transit (MRT) Project.
Study area and data collection

Data was collected from machine logs, performance metrics 
geotechnical measurements recorded throughout the construction 
phases. The data encompassed a range of parameters including cutter 
and machine operational properties, soil properties external forces 
impacting tunnel excavation (Figures 1 and 2) [7-9].
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Figure 1: Shield jack of Tunnel Boring Machine (TBM).

Figure 2: Tunneling alignment schematic showing stations, directions 
and inter-station distances.
Feature selection and importance of analysis

Feature importance was assessed through the calculation of 
Mutual Information (MI) to quantify the dependency between input 
variables and target outcomes related to TBM performance, including 
specific energy, tensile strength uniaxial strength [10]. mutual 
information, denoted by I (X; Y), measures the dependency between 
an input variable X and a target outcome Y, using the formula:

(x, y)(X;Y) . (x, y) log
(x) p(y)x X y Y

pI p
p∈ ∈

 
=  

 
∑ ∑

…… (1)
where p(x,y) represents the joint probability of X and Y p(x) 

and p(y) denote their marginal probabilities, respectively. The 
calculation of MI enabled the identification of key features, with 
tensile strength and uniaxial strength emerging as the most influential 
on TBM performance metrics. This assessment provided a sound 
basis for selecting the most relevant features for predictive modeling, 
optimizing model efficiency by reducing unnecessary computational 
requirements.
Partial dependence plots for feature impact assessment

To interpret complex interactions within the model, Partial 
Dependence Plots (PDPs) were generated for critical parameters, 
specifically uniaxial strength, spacing penetration. The PDPs 
captured both linear and non-linear relationships, showcasing the 
isolated effect of each feature on TBM performance [11,12]. This 
approach enabled a more refinement understanding of how changes 
in rock and operational parameters could impact model predictions 
and TBM efficiency.

Partial dependence function: For a feature xj, the partial 
dependence function fxj (xj) is defined as the expected prediction of 
the model across the distribution of all other features x-j:

j x j j(x ) E [y | x ]
∧

−= …… (2)
Where:

• ŷ is the model prediction, 

• Xj represents the feature of interest (e.g., uniaxial strength, 
spacing, or penetration),

• x-j represents all other features,
• Ex-j (⋅) denotes the expectation over the joint distribution of all 

features except xj.
This function describes the isolated effect of xj on ŷ while 

averaging out the impact of other variables [13,14].
Partial dependence plot calculations: Given a finite dataset, 

the partial dependence function can be estimated by averaging the 
model’s prediction over the sample distribution of the other features 
for each fixed value of xj:

(i)
j j j1

1(x ) (x , x )n
xj i

f y
n

∧ ∧

=
= −∑  …… (3)

Where
• n is the number of samples
• (i)

jx −  represents the values of all features except xjx_jxj for the 
iii-th instance,

• (i)
j jy(x , x )

∧

−  is the model’s prediction for the i-th instance with xj 
fixed.

PDP interpretation for non-linear relationships: For non-linear 
models, the Partial Dependence Plot (PDP) will show deviations 
from a straight line, indicating non-linear interactions [15]. In the 
case of TBM performance, if the PDP for uniaxial strength, spacing, 
or penetration curves upwards or downwards, it suggests non-linear 
effects where increases in these parameters do not proportionally 
impact performance. The slope of the PDP at any point gives an 
indication of the sensitivity of TBM performance to changes in the 
parameter at that specific range [16] (Figure 3).

Figure 3: Tunnel Boring Machine (TBM) front view showing cutter 
head and structure. 
Correlation analysis

The heatmap correlation matrix was constructed to reveal 
interdependencies among TBM operational features and rock 
properties. To quantify the strength and direction of these relationships, 
the Pearson correlation coefficient, a standard metric, was utilized to 
measure linear associations between feature pairs, such as Cutter 
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diameter and Tip Width, or Spacing and Specific energy [17].
Pearson correlation coefficient: The Pearson correlation 

coefficient rXY between two variables X and Y is defined as:

cov(X,Y)
XYr

X Yσ σ
= …… (4)

Where
•  i i1

1(X,Y) (X )(Y )n

i
Cov X Y

n =
= − −∑  represents the covariance between X 

and Y,
• Xσ and Yσ  are the standard deviations of X and Y, respectively,
• n is the number of samples,
• X  and X  are the mean values of X and Y.

The Pearson correlation coefficient rXY ranges from -1 to 1:
• rXY = 1 indicates a perfect positive linear relationship,
• rXY =-1 indicates a perfect negative linear relationship,
• rXY = 0 indicates no linear relationship between the variables 

[18].
Correlation matrix construction: When analyzing multiple 

features, the correlation matrix R is constructed, where each element 
Rij represents the Pearson correlation coefficient between the ith and jth 
features. This matrix can be represented as:
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where 𝑚 denotes the total number of features [19].

Statistical validation using ANOVA
An Analysis of Variance (ANOVA) was performed to statistically 

validate the influence of TBM and rock features on excavation 
performance, specifically examining their impact on specific energy 
[20]. ANOVA evaluates whether the means of Specific energy 
significantly differ across levels of each feature, providing insights 
into the strength of each parameter’s influence on TBM performance. 
The significance of this impact was quantified using p-values, where 
p<0.05 indicated a statistically significant effect.

ANOVA F-Statistic: In ANOVA, the F-statistic is calculated for 
each feature to test if the variance in Specific energy explained by 
the feature is greater than what would be expected by chance. For a 
feature X, the F-statistic F is given by:

2 2
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Where 

• K is the number of groups (e.g., levels of cutter diameter, tip 
width, or spacing),

• nk is the sample size in group k,
• ȳk is the mean of Specific energy in group k,
• ȳ is the overall mean of Specific energy,
• N is the total number of observations [21].

P-value calculation: The p-value associated with each F-statistic 
indicates the probability of observing a value as extreme as the 
F-statistic, assuming the null hypothesis (no effect of the feature) 
is true [22-24]. A p-value less than 0.05 suggests that the feature 
significantly influences Specific energy, thus impacting TBM 
performance. This threshold for significance was used to validate key 
parameters, including Cutter diameter, tip width spacing.

Statistically significant p-values (p<0.05) for features such 
as cutter diameter, Tip Width Spacing confirmed their substantial 
influence on excavation performance. This statistical validation 
supported the hypothesis that these parameters play essential roles in 
the excavation process, enhancing understanding of their individual 
contributions to TBM efficiency and informing further model 
refinement and parameter selection [25-27].
Model development and performance evaluation

Three regression models: Linear Regression, Random Forest 
Regressor Gradient Boosting Regressor were developed to predict 
TBM performance outcomes. The models were evaluated using 
standard performance metrics, including Mean Absolute Error (MAE), 
Mean Squared Error (MSE), Root Mean Squared Error (RMSE) the 
coefficient of determination, R-squared (R²). The Gradient Boosting 
Regressor demonstrated superior performance across all metrics, 
indicating its capacity to capture the complex, non-linear patterns in 
TBM and geotechnical data [28].

Mean Absolute Error (MAE):

i i1

1 | y y |n
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∧
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where:

• n is the number of observations,
• yi and ŷi are the actual and predicted values for each instance 

[29,30].
Mean Squared Error (MSE):  The Mean Squared Error, which 

penalizes larger errors more heavily by squaring the deviations, is 
defined by [31].
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Root Mean Squared Error (RMSE): Root Mean Squared Error, 

is the square root of the MSE, providing a metric with the same units 
as the target variable [32].
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Coefficient of determination (R²): The R-squared value, 

representing the proportion of variance explained by the model, is 
given by:
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where ȳ is the mean of actual values yi. An R² value close to 1 
indicates a strong model fit, while a value near 0 suggests a poor fit 
[33,34].

Linear Regression, Random Forest Regressor Gradient Boosting 
Regressor were developed to predict TBM performance outcomes, 
which one have consistently achieved the lowest MAE, MSE and 
RMSE values and the highest R², as the most effective in predicting 
TBM performance. This model’s ability to capture non-linear 
relationships reinforced its suitability for complex datasets, enhancing 
its potential to improve predictive accuracy in TBM and geotechnical 
applications.
Clustering and dimensionality reduction

K-Means clustering was applied to classify different operational 
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stronger the relationship between the feature and the target variable or 
between features themselves. According to the table, tensile strength 
has the highest MI value, 0.575929, indicating a relatively strong 
relationship with the target variable or other features. It is followed 
BY uniaxial strength, with an MI value of 0.548200, which also 
indicates significant dependence. Spacing (0.449164) still shows a 
fairly strong dependence, although not as strong as tensile strength 
and uniaxial strength.

No Fitur Mutual Information (MI)

0 Cutter Diameter 0.356691

1 Tip Width 0.324788

2 Spacing 0.449164

3 Penetration 0.309554

4 Normal Force 0.147374

5 Rolling Force 0.112586

6 Uniaxial Strength 0.5482

7 Tensile Strength 0.575929

Table 1: Mutual information score.

Features such as cutter diameter (0.356691) and tip width 
(0.324788) have lower MI values, indicating a weaker relationship 
with the target variable or between features compared to those 
with higher MI values. Penetration (0.309554) also shows a lower 
MI value, signaling weaker dependence. Meanwhile, normal force 
(0.147374) and rolling force (0.112586) have the lowest MI values, 
meaning they share very little information with the target variable 
or among features. Overall, features with higher MI values, such 
as tensile strength and uniaxial strength, are more relevant and can 
be considered more important when building models or performing 
further analysis. In contrast, features with low MI values, such as 
normal force and rolling force, show weaker relationships and may be 
considered for removal or further analysis to better understand their 
role in the dataset.
Partial Dependence Plots (PDP)

PDP show how the target variable changes with a specific feature, 
holding other features constant. PDPs are especially useful for 
interpreting complex models like random forests or gradient boosting.

Figure 4 presents a Partial Dependence Plot (PDP) illustrating the 
influence of three variables: Uniaxial strength, spacing penetration on 
the model’s predictions. In the first plot, an increase in uniaxial strength 
results in a higher predicted value, as indicated by the upward trend 
in partial dependence. This suggests that greater uniaxial strength 
has a positive impact on the model’s prediction. In the second plot, 
a negative relationship between spacing (distance) and the predicted 
value is shown. As the value of spacing increases, the predicted 
value tends to decrease, indicating that larger spacing may reduce 

states, with the optimal number of clusters determined through 
the Elbow Method [35]. Principal Component Analysis (PCA) 
was subsequently used to reduce data dimensionality, allowing for 
clear visualization of these clusters and revealing distinct operating 
conditions in TBM performance [36]. Clustering facilitated the 
identification of operational patterns, aiding in the categorization of 
TBM performance under diverse geotechnical conditions [37].

K-means clustering: K-Means clustering partitions data points 
into kkk clusters by minimizing the sum of squared distances between 
each data point and its assigned cluster centroid. Mathematically, the 
objective function is:

 …… (11)
where:

• k is the number of clusters,
• Ci represents the i-th cluster,
• x is a data point in cluster Ci,
• μi is the centroid of cluster Ci,
• ∥x−μi∥² denotes the Euclidean distance between x and μi.

Elbow method: The elbow method was employed to determine 
the optimal number of clusters, k, by evaluating the Within-Cluster 
Sum of Squares (WCSS) for different values of k. The WCSS is 
computed as:

2

1
WCSS= || ||

i

k
ii x c

x µ
= ∈

−∑ ∑ …… (12)
The value of k at the “elbow” point, where the decrease in WCSS 

becomes marginal, is selected as the optimal number of clusters.
Principal Component Analysis (PCA): Principal Component 

Analysis was used to reduce the dimensionality of the data, 
facilitating visualization of the clusters in two or three dimensions. 
PCA achieves dimensionality reduction by transforming the data into 
a set of linearly uncorrelated components, which explain the variance 
in the data. For each component jjj, the principal component score is 
calculated as:

j ij i1
PC  = w xp

i=∑ …… (13)
where:

• p is the original number of features,
• xi is the i-th feature,
• wij is the weight (loading) assigned to the i-th feature in 

component j.
The clustering analysis with the optimal k, enabled clear 

categorization of TBM operational states [38,39]. Visualizing 
clusters through PCA facilitated the understanding of different TBM 
performance patterns under varying geotechnical conditions. This 
approach provided a structured method to classify and analyze TBM 
operating conditions, supporting data-driven insights into TBM 
efficiency and operational categorization.

Results and Discussion
Mutual Information (MI) measures the dependency between 

two variables, capturing nonlinear relationships. Higher MI scores 
indicate stronger relationships, regardless of whether they’re linear 
or nonlinear.

Table 1 shows the Mutual Information (MI) values between 
several features in the dataset. Mutual Information measures the 
extent to which two variables share information, which may include 
both linear and non-linear relationships. The higher the MI value, the 
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Figure 5: Heatmap correlation matrix.
Analysis of Variance (ANOVA)

The ANOVA tables for Specific energy based on parameters are 
as follows (Table 2):

Source
Sum of 
squares

Df F p-value

Cutter diameter 3441,47 7 10,8
3,20 × 
10⁻12

Residual cutter 
diameter

14979,81 328

Tip width 2691,98 13 4,24 0,000002

Residual tip width 15729,3 322

Spacing 8.641,8 14 20,26
2,18 × 
10⁻36

Residual spacing 9.779,5 321

Penetration 7.749,09 24 9,41
5,38 × 
10⁻25

Residual 
penetration

10.672,19 311

Normal force 1,84 × 104 330
8,01 × 
1026

1,65 × 
10⁻67

Residual normal 
force

3,48 × 10⁻25 5

Rolling force 1,84 × 104 330
7,70 × 
1026

1,83 × 
10⁻67

Residual rolling 
force

3,63 × 10⁻25 5

the model’s output. Meanwhile, in the third plot, the penetration 
variable shows a sharp initial decline in partial dependence, after 
which changes in penetration have minimal effect on the prediction. 
This suggests that lower penetration values strongly influence the 
model’s output, but the impact diminishes as penetration increases. 
Small vertical lines at the bottom of each plot indicate the original 
data distribution for each variable, providing an overview of the data 
spread along the x-axis.

Figure 4: Partial dependence plots showing feature effects on model 
predictions.
Heatmap correlation matrix 

Figure 2 is a correlation matrix heatmap, displaying the 
correlation coefficients between various variables related to cutter 
and rock properties in drilling. Each cell in the heatmap represents 
the correlation coefficient between two variables, with values ranging 
from -1 to 1. The color intensity and hue indicate the strength and 
direction of the correlation: Positive correlations are shown in shades 
of red, while negative correlations are displayed in shades of blue. 
Stronger correlations, whether positive or negative, are represented 
by darker shades, while weaker correlations appear lighter.

Key observations include:
• Cutter diameter shows a strong positive correlation with tip 

width (0.78) and normal force (0.75).
• Tip Width is positively correlated with normal force (0.82) and 

rolling force (0.63), indicating that as tip width increases, both 
forces also tend to increase.

• Spacing has a moderate negative correlation with specific energy 
(-0.54), suggesting that closer spacing is associated with higher 
energy efficiency.

• Uniaxial strength and tensile strength exhibit a moderate positive 
correlation (0.66), which is expected as both are measures of 
rock strength.

• Penetration is negatively correlated with specific energy (-0.40), 
implying that increased penetration may lead to lower specific 
energy requirements.

The heatmap is useful for identifying relationships between 
variables in drilling operations, assisting in optimization and 
understanding of how different parameters interact (Figure 5).
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strength all play significant roles in determining the observed 
mechanical properties in this analysis.
Performance comparison of regression models

The scatter plot in Figure 6 provides a comparison of the 
performance metrics for three regression models: Linear Regression, 
Random Forest Regressor Gradient Boosting Regressor. The metrics 
displayed include:
• MAE (Mean Absolute Error) in blue, representing the average 

absolute error in predictions.
• MSE (Mean Squared Error) in orange, which emphasizes larger 

errors.
• RMSE (Root Mean Squared Error) in green, showing the 

average magnitude of prediction errors.
• R-squared (R²) in red, indicating the proportion of variance 

explained by the model.

Figure 6: Comparison of regression model performance metrics.
From the plot, it can be observed that the gradient boosting 

regressor generally performs the best across these metrics, followed 
by the random forest regressor, with linear regression having the 
highest error values and the lowest R-squared value.

The comparison performance model regression are as follows 
(Table 3).

Model

Mean 
Absolute 
Error 
(MAE)

Mean 
Squared 
Error 
(MSE)

Root Mean 
Squared 
Error 
(RMSE)

R-squared 
(R²)

Linear 
Regression

3.08 0,815278 4.35 0,04167

Random Forest 
Regressor

1.43 0,252778 2.38 0,06111

Gradient 
Boosting 
Regressor

1.23 0,214583 2.16 0,0625

Table 3: Comparison performance model regression.

The data in Table 3 Comparison of Regression Model Performance 
presents a comparison of the performance of three regression models 
- Linear Regression, Random Forest Regressor Gradient Boosting 
Regressor - based on four evaluation metrics: Mean Absolute Error 

Uniaxial strength 1,11 × 104 40 11,30
1,11 × 
10⁻39

Residual uniaxial 
strength

7,28 × 103 295

Tensile strength 1,22 × 104 49 11,39
9,38 × 
10⁻44

Residual tensile 
strength

6,24 × 10⁻25 286

Table 2: ANOVA table for specific energy.

The ANOVA table provides an analysis of variance for multiple 
factors affecting various mechanical properties, including Cutter 
diameter, Tip Width, Spacing, Penetration, normal force, rolling 
force, uniaxial strength tensile strength. Here is an interpretation of 
the results:

Cutter diameter: The F-value of 10.8 and a very low p-value 
(3.20 × 10⁻¹²) indicate a statistically significant effect of cutter 
diameter on the measured outcome. This suggests that cutter diameter 
has a notable influence, as the probability of these results occurring 
by chance is exceedingly low.

Tip width: With an F-value of 4.24 and a p-value of 0.000002, 
Tip Width also shows a statistically significant impact on the outcome. 
The low p-value implies that the differences in outcomes based on Tip 
Width are unlikely due to random variation.

Spacing: An F-value of 20.26 and an extremely low p-value 
(2.18 × 10⁻³⁶) suggest a highly significant effect of spacing on the 
observed variable. This very low probability supports the conclusion 
that spacing is an important factor influencing the measured results.

Penetration: The F-value of 9.41 with a p-value of 5.38 × 10⁻²⁵ 
implies a significant impact of Penetration. This further demonstrates 
that variations in Penetration levels lead to statistically significant 
changes in the outcome.

Normal force: The exceptionally high F-value (8.01 × 10²⁶) and 
extremely low p-value (1.65 × 10⁻⁶⁷) indicate a good significant effect 
of normal force. This large F-value suggests a very strong relationship 
between normal force and the observed variable.

Rolling force: Similar to normal force, rolling force also has a 
very high F-value (7.70 × 10²⁶) and a p-value close to zero (1.83 × 
10⁻⁶⁷), signifying a highly significant effect. This result supports the 
importance of rolling force in determining the outcome.

Uniaxial strength: The F-value of 11.30 and a p-value of 1.11 × 
10⁻³⁹ point to a significant influence of uniaxial strength. the very low 
p-value indicates that variations in uniaxial strength are associated 
with notable changes in the measured property.

Tensile strength: With an F-value of 11.39 and a p-value of 9.38 
× 10⁻⁴⁴, tensile strength exhibits a significant effect on the outcome. 
The probability of this result occurring by chance is extraordinarily 
low, confirming that tensile strength is a significant factor.

Each factor tested in the ANOVA table, as indicated by the low 
p-values, significantly influences the specific outcomes measured. 
High F-values and correspondingly low p-values across factors 
suggest that each has a substantial effect, with statistical significance 
suggesting these are not results of random variation. These findings 
provide strong evidence that cutter diameter, tip width, spacing, 
penetration, normal force, rolling force, uniaxial strength tensile 
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Figure 7: Elbow method for optimal K.
The Elbow Method plot is utilized to determine the optimal 

number of clusters (K) in a dataset for clustering algorithms such 
as K-means. Inertia, which represents the sum of squared distances 
between each data point and the centroid of its assigned cluster, is 
shown in the plot. Lower inertia values suggest that data points are 
closer to their cluster centers, indicating better-defined clusters. As 
the number of clusters (K) increases, inertia decreases because each 
cluster becomes smaller and more specific to a group of points. A 
significant drop in inertia is observed as K increases from 1 to 4, after 
which the rate of decrease in inertia slows considerably. The ‘elbow’ 
is typically identified at the point where this transition occurs, where 
adding more clusters beyond that point yields diminishing returns in 
reducing inertia. This point is often considered the optimal number 
of clusters, as it balances compactness and simplicity. In this plot, 
the elbow appears around K=3 or K=4, suggesting that these values 
could represent the optimal number of clusters for the dataset. Using 
more clusters may overfit the data or add unnecessary complexity 
without providing significant benefits. Therefore, K=3 or K=4 would 
provide well-defined clusters without excessive complexity. The 
choice between 3 and 4 may depend on specific clustering goals or 
further evaluation of interpretability and practicality in the application 
context. In summary, the Elbow Method suggests that 3 or 4 clusters 
would be optimal, as adding more clusters beyond this point does not 
significantly reduce inertia.

Clustering can be performed based on several key parameters, as 
outlined below. Cutter diameter, for example, can be used to group 
the data into categories such as small diameter (<15 mm), medium 
diameter (15 mm-20 mm) large diameter (>20 mm). Tip width is 
another parameter for clustering, with classifications like small tip 
width (<0.5 mm), medium tip width (0.5-0.75 mm) large tip width 
(>0.75 mm). Spacing between cutters can also be used for grouping, 
such as small spacing (<2 mm), medium spacing (2-4 mm) large 
spacing (>4 mm). Penetration depth is considered, with categories 
like shallow penetration (<0.25 mm), medium penetration (0.25-0.5 
mm) deep penetration (>0.5 mm). Normal force and rolling force can 
be grouped based on the magnitude of the forces, with low forces 
(<5000 N), medium forces (5000-10000 N) high forces (>10000 N). 
Material strength, such as uniaxial strength and tensile strength, is 
another parameter for clustering, with low strength (<15000 MPa), 
medium strength (15000-25000 MPa) high strength (>25000 MPa). 
Finally, specific energy can be used to group the data into low energy 
(<5 MJ/m³), medium energy (5–10 MJ/m³) high energy (>10 MJ/m³) 
categories. These groupings provide a useful overview for analyzing 
trends in various cutting parameters, which can be applied to optimize 
processes based on specific conditions or materials (Table 4).

(MAE), Mean Squared Error (MSE), Root Mean Squared Error 
(RMSE) R-squared (R²). The Gradient Boosting Regressor was 
found to demonstrate the strongest performance among the three 
models, achieving the lowest Mean Absolute Error (MAE) of 1.23, 
Mean Squared Error (MSE) of 0.2146 Root Mean Squared Error 
(RMSE) of 2.16, indicating smaller prediction errors compared to 
the other models. Additionally, its R2 value of 0.0625 suggests that 
approximately 90% of the variance in the target variable, “Specific 
energy hp hr/yd3,” is explained. This high performance reflects the 
model’s capacity to capture complex relationships in the data and 
generalize effectively, largely due to its sequential optimization of 
multiple weak learners (decision trees) that effectively reduce errors, 
especially in nonlinear scenarios.

The Random Forest Regressor also performed well, with an 
MAE of 1.43, MSE of 0.2528 RMSE of 2.38, though these values are 
slightly higher than those of Gradient Boosting, indicating slightly 
larger errors. Its R² value of 0.0611 suggests that around 89% of 
the variance is explained, which is good but slightly lower than that 
of Gradient Boosting. Random Forests are noted for minimizing 
overfitting by averaging multiple decision trees and perform well 
with nonlinear relationships; however, Gradient Boosting’s sequential 
approach yields greater accuracy for this dataset.

In contrast, Linear Regression served as a baseline model and 
produced significantly larger errors, with an MAE of 3.08, MSE of 
0.8153 RMSE of 4.35. Its R² value of 0.0417 is low, indicating that 
only around 4.2% of the variance in “Specific energy hp_hr/yd³” is 
explained. The limited complexity of Linear Regression makes it less 
suitable for capturing nonlinear patterns in the data, resulting in lower 
predictive performance compared to the ensemble models.

The Gradient Boosting Regressor is recommended for this dataset 
due to its superior accuracy across all evaluation metrics, achieving 
the lowest MAE, MSE RMSE values, along with the highest R². This 
model effectively captures complex, nonlinear relationships, making 
it highly suitable for predicting “Specific energy hp_hr/yd³”. 

The Random Forest Regressor also demonstrated strong 
performance and may serve as a good alternative if computational 
resources are limited, as Random Forests generally train faster than 
Gradient Boosting. However, in this case, Gradient Boosting provides 
the optimal balance between accuracy and complexity. The Linear 
Regression model can be used as a baseline but lacks the predictive 
power needed for accurate outcomes on this dataset. Its inability to 
capture the nonlinear patterns in the data results in higher prediction 
errors and a low R² value. The Gradient Boosting Regressor offers 
the most accurate and reliable predictions for “Specific energy hp_hr/
yd³” in this dataset, making it the most suitable model.
Optimizing clusters with the elbow method: K-means 
clustering, PCA visualization and cluster summary

Below are the results of applying the Elbow Method to determine 
the optimal value of K in the K-Means algorithm. First, the Elbow 
Method is used to plot a graph that helps determine the correct 
number of clusters by identifying the elbow point, which indicates a 
slower decrease in variance. 

After finding the optimal number of clusters, the K-Means 
algorithm is used to group the data into the appropriate clusters. Next, 
to simplify visualization the PCA (Principal Component Analysis) 
method is applied to reduce the data dimensions to 2D, allowing for 
a clearer graphical representation of the cluster distribution. Finally, 
the cluster summary provides further insights into the average values 
for each feature within each cluster, which helps in understanding the 
characteristics of each group (Figure 7).
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selecting appropriate cutting conditions based on specific energy 
or force constraints (Figure 8).

The Principal Component Analysis (PCA) plot provides a 2D 
visualization of the clusters identified in the dataset, resulting from 
dimensionality reduction. The x-axis represents Principal Component 
1 the y-axis represents Principal Component 2. These components 
are linear combinations of the original variables, chosen to capture 
as much variance as possible in the data. By reducing the data to 
two principal components, the complexity is minimized, making it 
easier to visualize patterns and groupings within the dataset. The data 
points are color-coded based on the clusters they belong to, with each 
color corresponding to a specific cluster, as indicated by the color 
gradient on the right. Cluster 0 (green) is primarily located on the left 
side of the plot, suggesting that its data points share similarities in 
their principal component values that distinguish them from the other 
clusters. Cluster 1 (yellow) occupies a central position, indicating an 
intermediate set of characteristics between Cluster 0 and Cluster 2. 
Cluster 2 (purple) is positioned on the right side, indicating a distinct 
set of properties that differentiate it from the other clusters. The spread 
of points within each cluster reveals the variance in the dataset for 
each group. For example, Cluster 0 exhibits a wider spread along both 
principal components, indicating higher variance within that cluster 
compared to the others. While PCA helps visualize the clusters in two 
dimensions, some information from the original dataset is inevitably 
lost in this transformation. Thus, although the clusters are clearly 
separated in this plot, this 2D visualization may not fully capture all 
the complexities of the original multidimensional data. In summary, 
the PCA visualization demonstrates clear separation among the 
clusters, indicating that they have unique properties captured through 
dimensionality reduction.

The cluster summary provides perceptions into the average values 
for each feature within each cluster (Table 5).

The cluster data table 4 provides a summary of different cutting 
conditions organized by clusters. Each row represents a specific 
cutting condition, with key variables such as ‘Specific energy,’ 
‘Normal force,’ and ‘Rolling Force,’ as well as the assigned cluster 
label. The dataset is segmented into multiple clusters, with Cluster 
0 and Cluster 1 being the primary groups. Specific energy values 
are lower for Cluster 0, indicating that the cutting conditions in this 
cluster require less energy per unit volume. In contrast, Cluster 1 
shows higher Specific energy values, suggesting that these conditions 
are more energy-intensive. Normal force, which represents the 
force perpendicular to the cutting surface, varies significantly 
across clusters. Cluster 0 generally has lower normal force values, 
while Cluster 1 exhibits considerably higher normal force values, 
implying that conditions in Cluster 1 require greater force. Rolling 
Force, which contributes to the rotational component of the cutting 
process, also varies between clusters, with Cluster 0 showing lower 
values compared to Cluster 1. Conditions in Cluster 0 are associated 
with lower Specific energy, normal force Rolling Force, indicating 
greater efficiency in terms of energy and force. Examples such as 
‘Condition1,’ ‘Condition332,’ and ‘Condition336’ are assigned to 
Cluster 0, showing lower values for all three metrics. In contrast, 
conditions in Cluster 1 exhibit higher values for Specific energy, 
Normal force Rolling Force, indicating more demanding cutting 
conditions, possibly corresponding to tougher materials or more 
aggressive parameters. Examples like ‘Condition2,’ ‘Condition4,’ 
and ‘Condition5’ are assigned to Cluster 1, showing significantly 
higher values. 

The clustering suggests that Cluster 0 conditions are more 
efficient, suitable for applications where energy savings and lower 
forces are desired, while Cluster 1 conditions, with their higher 
energy and force requirements, may be suited for heavy-duty 
or high-performance applications. This clustering can help in 

Table 4: Cluster data..

No Cutting condition Specific energy Normal force Rolling force Cluster

0 Condition1 4.269376 32163 2446 0

1 Condition2 5.820501 41242 5002 1

2 Condition3 5.807992 46634 6655 1

3 Condition4 5.322232 51969 7623 1

4 Condition5 12.03664 68521 6896 1

... ... ... ... ... ...

331 Condition332 4.352258 3681.597 554.1077 0

332 Condition333 6.609274 1841.327 378.6569 0

333 Condition334 5.181177 2433.687 494.7312 0

334 Condition335 4.807548 2760.189 550.8656 0

335 Condition336 3.772692 4010.447 720.4804 0
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Figure 8: Cluster analysis of cutting conditions (PCA)

Cluster
Cutter 
diameter

Tip width 
(in)

Spacing Penetration
Normal 
Force

Rolling 
Force

Uniaxial 
strength

Tensile 
strength

Specific 
energy

0 9.444724 0.361156 2.72201 0.236558 13741.8376 1840.95302 14447.9309 1188.5628 7.124275

1 16.64368 0.556736 3.641839 0.526322 46201.0951 6841.1597 20156.4195 1417.9552 9.555326

2 8.22 0.357 1.3425 0.1188 15105.763 1784.23236 27441.72 1763.64 23.917993

Table 5: Cluster summary result.

cluster is characterized by high specific energy or high cutting forces, 
which may indicate cutting conditions that require adjustments to 
improve performance. This approach aids in identifying the most 
efficient cutting conditions, providing a foundation for further 
experimentation or optimization of tool configurations and cutting 
parameters.

Conclusion
This study has successfully highlighted the performance 

capabilities of Earth Pressure Balance (EPB) Tunnel Boring Machines 
(TBMs) during the construction of the Jakarta MRT’s Underground 
Section CP106. Using comprehensive analysis methods such as 
Mutual Information (MI), Partial Dependence Plots (PDP) ANOVA, 
we identified several factors that significantly influence TBM 
efficiency, including Tensile Strength, uniaxial strength, Spacing 
Penetration. The Gradient Boosting Regressor emerged as the most 
accurate predictive model for this dataset, effectively capturing 
the nonlinear relationships in TBM operational data. Additionally, 
clustering methods revealed distinct patterns in operational 
configurations, indicating that settings with lower Specific energy, 
normal force Rolling Force tend to enhance energy efficiency and 
reduce force requirements, making them preferable for less energy-
intensive tunneling.

Future research should focus on enhancing model validation by 

The cluster summary compares three clusters based on specific 
drilling and mechanical properties, including cutter diameter, tip 
width, spacing, penetration, normal force, rolling force, uniaxial 
strength, tensile strength specific energy. Cluster 0 is characterized 
by moderate to low values across most properties, with a relatively 
small cutter diameter, shallow penetration low energy consumption, 
making it suitable for applications requiring less power and strength. 
Cluster 1, on the other hand, exhibits the highest values in almost all 
properties, including the largest cutter diameter, highest forces higher 
energy consumption, indicating that it is best suited for high-force 
applications where larger, stronger more force-intensive operations 
are needed. 

Cluster 2 features a smaller cutter and spacing but higher material 
strength and energy consumption, suggesting that it is optimal 
for high-strength materials where the cutting force needs to be 
concentrated in a smaller area, resulting in higher energy demands. 
Overall, each cluster represents different configurations of drilling 
conditions tailored to specific application requirements, ranging from 
low-energy and moderate-strength conditions to high-force and high-
strength scenarios. By comparing all the clusters, conclusions can be 
drawn regarding the optimal and non-optimal cutting conditions. The 
optimal cluster is identified as one with a combination of low specific 
energy and moderate or low cutting forces, suggesting more efficient 
and less energy-intensive conditions. Conversely, the non-optimal 
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18. Deng S, Zhang J, Huang Y, Zhong J, Yang X (2024) A revisit to Pearson 
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19. Gaines SO (2023). Output regarding Creation of Correlation Matrix, 
Gaines et al. (2013, n = 172). 319-322 

20. Kim KY, Jo SA, Ryu HH, Cho GC (2020) Prediction of TBM performance 
based on specific energy. Geomech Eng 22(6):489-96. 

21. Chu J, Lee TH, Ullah A, Xu H (2021) Exact distribution of the F-statistic 
under heteroskedasticity of unknown form for improved inference. J Stat 
Comp Simul 91(9):1782-801. 

22. Fingerhut A (2023) Probability, p values and statistical significance: 
Instructions for use by surgeons. British J Sur 110(4):399-400. 
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Management Sci 13(2):59-61. 

24. Sil A, Betkerur J, Das NK (2019) p-value demystified. Indian Dermatol 
Online J 10(6):745-50. 

25. Park B, Lee C, Choi SW, Kang TH, Chang SH (2021) Discrete-element 
analysis of the excavation performance of an EPB shield TBM under 
different operating conditions. App Sci 11(11):5119. 

26. Pourhashemi SM, Ahangari K, Hassanpour J, Eftekhari SM (2021) 
Evaluating the influence of engineering geological parameters on TBM 
performance during grinding process in limestone strata. Bul Eng Geol 
Env 80:3023-40. 

27. Zhang H, Xia M, Huang F, Zhang Z (2024) Research on rock-breaking 
characteristics of cutters and matching of cutter spacing and penetration 
for tunnel boring machine. Buildings 14(6):1757. 

28. Ma T, Jin Y, Liu Z, Prasad YK (2022) Research on prediction of TBM 
performance of deep-buried tunnel based on machine learning. App Sci 
12(13):6599. 

29. Müller PG, Lüdecke HJ (2024) Normalized coefficients of prediction 
accuracy for comparative forecast verification and modelling. Res Stat 
2(1):2317172. 

30. Robeson SM, Willmott CJ (2023) Decomposition of the Mean Absolute 
Error (MAE) into systematic and unsystematic components. PloS one 
18(2): e0279774. 

31. Zhang Y, Zhao Y, Wang G, Xue R (2021) Mean square cross error: 
Performance analysis and applications in non-gaussian signal processing. 
EURASIP J Adv Signal Proces 2021(1):24. 

32. Hodson TO (2022) Root Mean Square Error (RMSE) or Mean Absolute 
Error (MAE): When to use them or not. Geosci Model Develop Dis 
2022:1-0. 

33. Ozili PK (2023) The Acceptable R-Square In Empirical Modelling For 
Social Science Research. Insocial Research Methodology And Publishing 
Results: A Guide To Non-Native English Speakers. IGI global.  

34. Rights JD, Sterba SK (2020) New recommendations on the use of 
R-squared differences in multilevel model comparisons. Multiv Behav 
Res55(4):568-99. 

35. Onumanyi AJ, Molokomme DN, Isaac SJ, Abu MAM (2022) AutoElbow: 
An automatic elbow detection method for estimating the number of 
clusters in a dataset. App Sci 12(15):7515. 

36. Chaouk H, Obeid E, Halwani J, Arayro J, Mezher R, et al (2024) 
Application of principal component analysis for the elucidation of 
operational features for pervaporation desalination performance of PVA-
based TFC membrane. Processes. 12(7):1502. 

37. Wang H, Wang J, Zhao Y, Xu H (2021) Tunneling parameters 
optimization based on multi-objective differential evolution algorithm. 
Soft Computing 25:3637-56. 

38. Wang W, Yan C, Guo J, Zhao H, Li G, et al (2024) Improving tunnel 
boring machine tunnelling performance by investigating the particle size 
distribution of rock chips and cutter consumption. Buildings 14(4):1124. 

39. Zhang J, Chen M, Hong X (2021) Nonlinear process monitoring using 
a mixture of probabilistic PCA with clusterings. Neurocomputing 
458:319-26. 

incorporating additional machine learning models and cross-validation 
techniques to confirm the robustness of the Gradient Boosting 
Regressor’s predictions. Moreover, the implementation of real-
time monitoring and analysis could improve on-the-fly adjustments 
in TBM operations, optimizing both safety and performance. The 
clustering insights derived from this study also suggest that TBM 
configurations can be tailored to specific ground conditions, allowing 
for energy efficiency optimization and a reduction in mechanical 
wear. Lastly, integrating a broader range of geotechnical parameters, 
such as soil moisture content and temperature, into predictive models 
could enhance the accuracy of TBM performance predictions, 
adapting them effectively to various ground conditions encountered 
in tunneling projects.
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