
Abstract 

Exosomes are recently discovered biological nanoparticles (50-

150 nm) that contain signaling cargo pertinent to paracrine cellular 

signalling within all tissue systems of the human body. Once 

thought of as cellular debris, exosomes have demonstrated a vast 

array of applications significant to both the medical and 

regenerative fields. These extracellular vesicles are secreted from 

cells as larger multivesicular bodies undergo exocytosis following 

endosomal processing. Exosome detection in bodily fluids during 

disease progression has demonstrated potential application as 

an early-detection disease biomarker. Furthermore, exosomes 

have been shown to upregulate regenerative effects, such as 

tissue repair and angiogenesis, in tissue microstructures. Due to 

the size and bioengineering versatility, exosomes have been the 

subject of extensive research into targeted drug and gene delivery 

system development. This minireview aims to characterize both 

the composition and reported functions of exosomes in addition to 

potential applications of this technology. 
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Introduction 

Exosomes were originally observed 50 years ago when they were 

assumed to be the means by which cells disposed of waste products 

such as unneeded proteins and excess nucleic acids. The recognition 

of the true nature of what we now call exosomes came in the 1980’s, 

from studies on the loss of transferrin during the maturation of 

reticulocytes into erythrocytes [1,2]. In the past decade, interest in 

exosomes has exploded. There was a tenfold increase in publications 

from 2006 to 2015 and the PubMed search term “exosome” returns 

nearly 10,000 articles for the year 2018 [3]. The pace and magnitude 

of exosome research continues to accelerate rapidly. Nonetheless, 

despite 20 years of research, the very basics of exosome biology are 

in their infancy and we know little of the part they play in normal 

cellular physiology, or their potential as therapeutic modalities. The 

objective of this mini review will be to elucidate on the characteristics 

and reported therapeutic applications of these extracellular vesicles. 

Exosome Characteristics 

Exosomes are roving packets of potent messenger molecules. 

Similar in mechanism to paracrine signaling utilizing growth factors 

and cytokines, exosomes are bioactive constituents of the secretome 

of the cell of origin [4]. Exosomes are lipid-bilayer-enclosed biological 

nanoparticles with sizes ranging from 30 to 150 nm, about 1/1000th the 

size of the average cell [5]. They are released into the extracellular space 

by most types of cells when intracellular multivesicular endosomes 

(MVE) fuse with the cell plasma membrane [5]. They are found in 

many body fluids including serum, plasma, urine, cerebrospinal fluid, 

saliva, semen, milk, bile, ascites, and amniotic fluid [6,7]. Also similar 

to other bio-signals, they can be taken up and affect the behavior of 

nearby recipient cells or travel through the bloodstream to influence 

biologic responses of cells in distant organs [6]. Exosomal cargo 

is mostly comprised of proteins and miRNAs, which represent a 

carefully selected fraction of those same molecules from their parent 

cells (Figure 1). In addition, the exosomal miRNAs, unlike cellular 

miRNAs, are highly enriched in pre-miRNAs, while the proteins are 

functionally clustered in several processes. Together, this selective 

composition of RNAs and proteins in exosomes demonstrates that 

exosome biogenesis is a highly regulated, and therefore an important, 

cellular process. Moreover, this exclusive RNA-protein composition 

continues to provide insights into various molecular targets for 

exosome-mediated functions. 

Exosomes in Tissue Regeneration 

Previous studies have demonstrated that the in vivo regenerative 

effects of stem cells are due to paracrine signaling via cytokines 

and growth factors that promotes tissue generation in the local 

environment [8-10]. Exosomes have been shown to play a similar 

role in this process through the intercellular transmission of protein 

and nucleic acid components which in turn initiate downstream 
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Figure 1: Schematic of exosome biogenesis and its associated cargo. 

Exosomes are formed by budding of the endosomal membrane, forming 

multivesicular bodies (MVB). MVB then fuses with the plasma membrane, 

and releases exosomes into extracellular space. Exosome has a lipid shell, 

and contains proteins, miRNA, mRNA, and DNA. Surface markers CD9, 

CD63, and CD81 are characteristics of exosome. Reproduced from [66] 

under Creative Commons license. 
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effects in neighboring targeted cells [11,12]. In wound healing 

models, treatment with stem cell-derived exosomes have resulted 

in improvements in wound healing completion time, epithelial 

structure, and scarring reduction [13-15].These improvements are 

particularly important for wound healing in diabetic patients where 

these processes are strained by diabetes pathophysiology. Recent 

studies have described enhanced neovascularization in cardiac [16,17] 

and renal [18] tissue systems treated with exosomes isolated from 

umbilical cord derived mesenchymal stem cells (MSCs). Upregulation 

of functional proteins, such as Wnt4 and VEGF, have been shown 

to induce these downstream angiogenesis-promoting effects [19,20]. 

These regenerative capabilities have potential application to combat 

ischemia of transplanted tissue housed within bio-artificial devices. 

Exosomes in Health & Disease 

Containing cell-of-origin cytoplasmic contents including 

proteins, mRNAs, miRNAs, lipids and other macromolecules [6], the 

exosome cargo has the potential to affect targeted cellular functions 

in either healthy or pathological ways. Hence, exosomes are intrinsic 

to normal cellular communication and function [21], as well as being 

incriminated in the genesis and metastatic behavior of malignancies 

[22-25]. 

As essential messenger emissaries functioning throughout the 

body, they are attractive candidates as possible therapeutic envoys. 

For instance, because the blood brain barrier (BBB) prevents 

penetration of 98% of small molecule drugs, and exosomes have the 

ability to cross the BBB under inflammatory conditions, it may prove 

feasible to use exosomes in the treatment of neurological diseases and 

traumatic conditions [26,27]. This could have profound implications 

in treatments for Parkinson’s and Alzheimer’s diseases, and other 

neurologic maladies including stroke and traumatic injury. Indeed, 

recently published research, in which certain authors participated, 

demonstrates the value of mesenchymal stem cell-derived exosomes 

in treating a mouse model of multiple sclerosis [28,29]. 

Advances in Exosome Technology 

The highly regulated cellular secretion of exosomes, including the 

specific composition of their cargo and cell-targeting specificity, are 

of immense biological interest. They have extremely high potential as 

non-invasive diagnostic biomarkers for many degenerative illnesses 

such as kidney disease [30,31], Alzheimer’s disease [32,33], Parkinson’s 

disease [34], and various types of cancer [35-37]. As biomarkers, they 

appear useful in evaluating normal and pathological biologic processes 

and monitoring the response to therapeutic intervention. Exosomes 

can thus provide insights on diagnosis, prognosis, regression or 

response to disease and disease treatments. Development of exosome- 

derived therapeutic nanocarriers for targeted drug and gene delivery 

have also been reported for numerous disease models [38-42]. The 

implications of these recent studies demonstrate the potential dual 

function to both diagnose and treat human diseases (Table1). 

Conclusion 

Once described as cellular debris, exosomes have been shown 

to have biologically intrinsic significance in cell communication 

and demonstrated versatility in functional application. Increased 

understanding of exosome physiology is poised to transform medical 

technology in myriad ways. In Table 1 we have provided examples 

of exosome uses for specific clinical indications. Exosome technology 

has potential to produce a new class of natural, functional, and cell- 

Table 1: Utility of exosomes. This table summarizes the various utility of exosomes 

both as diagnostic markers and delivery of active molecules in clinical setting. 
 

Utility of exosome References 

Disease detection [43, 44] 

Cancer detection  

Breast cancer [45] 

Lung cancer [46] 

Prostate cancer [47] 

Colon cancer [48] 

Melanoma [49] 

Bladder cancer [50] 

Non-Hodgkin lymphoma [51] 

Renal cell cancer [52] 

Endometrial cancer [53] 

Leukemia [54] 

Pancreatic cancer [55] 

Thyroid cancer [56] 

Central nervous system diseases  

Parkinson’s disease [57] 

Alzheimer’s disease [58] 

Stroke and traumatic injury [59] 

Inflammation [60] 

Autoimmune disease [61] 

Regeneration markers [62] 

Wound healing [63] 

Drug delivery [64] 

Gene delivery [65] 

 
free drugs with both medical and regenerative relevance. Due to 

the infancy of the field, exosome research is projected to increase 

in popularity as more potential applications of this technology are 

discovered. 
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