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Abstract
This paper covers analytical relationships between phase noise, 
lock time and jitter variance. An expression is derived for Lock 
time in terms phase margin. Analytical expressions have been 
derived in this paper for the variation of Lock time with respect to 
Phase Margin and lock time with respect to its damping coefficient. 
Analytical expressions are derived for the jitter variance with respect 
to the phase margin of a second-order PLL. Analytical expressions 
are also derived for the derivative of jitter variance of a second-
order PLL with respect to its phase margin. The jitter variance is 
plotted separately for time varying part of the jitter variance and time 
invariant part pf the jitter variance.
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Phase Margin (PM) is the excess phase shift in a PLL when the 
gain is unity. It’s a measure of relative stability of the PLL.

Damping Coefficient (DC,ζ ) is a PLL parameter that controls 
the nature of the oscillatory response of a PLL. Lower the DC the more 
oscillatory the response of the PLL to a step input. Underdamped 
PLLs have (DC <1), overdamped PLLs have (DC>1).

The natural frequency )( nω  for a second-order PLL is defined as 
a function of VCO sensitivity, PFD sensitivity, divide ratio and loop 
filter time constant.

Phase noise – The voltage of an oscillator in the presence of both 
random variations in amplitude and phase can be represented as:

( ) ( )( )( ) ( ) cos 2V t A v t ft tπ ϕ= + +                         (2)

In Equation (2),  is the amplitude of the original frequency 
source. In turn,  are the random fluctuations of amplitude, 

  is the center frequency of the frequency source, and ( )tφ  is the 
instantaneous value of random phase perturbation of the frequency 
source which gives rise to Phase noise.

Energy due to the phase perturbation term can be written as a 
square of the magnitude of Fourier Transform of the auto-correlation 
function of the phase variation.

( )( )2)( tFfS φ=                        (3)

In Equation (3)  is the Fourier Transform operator. ( )tφ  is a 
random variable representing phase noise in time domain. )( fSφ

 is 
Power Spectral Density (PSD) of jitter.

Absolute jitter is the difference between successive zero crossing 
times of a waveform after Lee [1].

{ },a n nj t nT= −                          (4)

In Equation (4), nt is the time of zero crossing at the end of nth 
cycle, nT  is the cycle number (n) times nominal period (T), and naj ,

is the absolute jitter in the nth cycle.

If the nominal period and zero crossing points for a time domain 
waveform are known, the period jitter can be defined as (Lee [1]),

{ }Tttj nnn −−= +1                      (5)

In Equation (5), T is the nominal period of a waveform, tn is the 
zero crossing at nth cycle end, and 1+nt  is the zero crossing in (n+1)th 
cycle. Sequence jn is the Period jitter of nth cycle.

Jitter variance is the time averaged variance of jitter the square of 
the amplitude of jitter-assumed to be a zero-mean process.

The transfer function which is the output to input ratio of the PLL 
in the ‘s’ domain of the second-order PLL with a first-order loop filter 
is written as:
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In Equation (6), G (S) is the Transfer function of the forward path 
of a PLL. In turn, ( )PLLH s  is the Transfer function of the PLL, H (S) 

Introduction
Second-order PLLs comprise of four blocks. The first block is the 

Voltage-Controlled Oscillator (VCO) – an oscillator whose output 
frequency is a function of a control voltage applied at its input. Linear 
VCO models are used. The second block is a frequency divider block 
which is used to divide the VCO output frequency by a fixed quantity. 
Divider input is the VCO frequency of the PLL and divider output is 
the comparison frequency of the PLL. The third block is the Phase-
Frequency Detector (PFD) which compares the phase shift between 
a reference frequency waveform (primary input) and the output of 
the divider. The time varying output of the PFD is filtered before the 
said output is applied to the VCO input. The fourth block of a second-
order PLL is a RC filtering block to filter the PFD output (Figure 1).

VCO sensitivity (Kv) is the ratio of output frequency of a VCO 
divided by the control voltage (input) measured in Hz/volt. PFD 
sensitivity ( )Kϕ -Measure of PFD output (usually control voltage) vs. 
phase difference at PFD input.

Divide ratio is the ratio of PLL output frequency (f2) divided by 
PLL comparison frequency (f1). It is an integer for integer divider 
PLLs and a fraction for fractional divider PLLs.

12 / ffN =                 (1)

N is termed as the divide ratio of a PLL.  f2 and f1 are the output 
and input frequency respectively.
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is the Transfer function of the feedback path of a PLL, Kv is the VCO 
sensitivity (Hz/Volt), φK  is the PFD Sensitivity, and VK K Kϕ=  is 
the product of VCO sensitivity and PFD Sensitivity. RCτ =  is the 
time Constant of Loop filter and N is the feedback divide ratio

Converting Equation (6) to a generic transfer function one 
obtains the transfer function of a second order Type I PLL in terms of 
its them nω  and ζ  as,
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H s
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ζω ω
==
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                             (7)

In Equations (6 and 7), the denominator polynomial is of the 
second order, which describes the PLL as a generic second order 
system. DC  and natural frequency  are defined for generic second 
order systems [2]. Some necessary terms that must be defined in this 
paper.

Noise Transfer Function (NTF) is the transfer function from a 
noise source to the primary output of a PLL [3].

Amornthrippart et al. [4] has discussed computation of phase 
noise in PLLs using phase noise sources and noise transfer function.

Daniels [3] has derived a piece wise linear model of a second 
order PLL. Daniels defines a new type of stability criterion for 
second order PLLs based on conservation of charge. Daniels [5] 
further extends his second order PLL work to third-order and 
fourth-order PLLs. However, the relationship between Phase 
noise and the referred performance metrics of PLL has not been 
explored in [5].

Drucker [6] has derived expressions for the noise transfer 
functions (NTF) of 4 different phase noise sources of arbitrary 
order PLL. Drucker [6] has discussed models of multiple noise 
sources without providing a closed form expression to compute the 
composite PSD (Phase Noise) at the output of PLL. Drucker [6] and 
He [7] did not relate the influence of performance metrics of DAC-
PLL such as PM, settling time and damping coefficient on the phase 
noise of DAC-PLL.

Savic [8] considers the variation of PM with bandwidth of loop 
filter in a 3rd order PLL.

He [7] has provided an analysis of PM of second, third and fourth 
order PLL and the variance of lock time with PM.

Razavi [9] has described PLL transfer functions and provided 
insights into general phase noise analysis.

Golestan et al. [10] present higher order PLL design for power 
system applications. A systematic method for the design of higher 
order PLLs is described. It does not discuss theoretical issues with the 
roots of a third order or fourth order PLL.

Golestan et. al. [10] discusses three phase Frequency Locked 
Loops [FLLs] for power systems and provides models and stability 
analysis of three-phase second order FLLs. If power systems are 
imbalanced the instantaneous frequencies of each phase can be 
slightly different. A second order FLL tracks both frequency and its 
derivative in a imbalanced 3 phase system.

Herzel and Piz [11] have derived the NTFs for a fractional N PLL 
with the sigma-delta modulator in the feedback path. PLL model of 
Drucker [6] is easy to use to compute phase noise.  Herzel [12] places 
the divider noise source is placed before the frequency divider, in this 
paper the noise source is placed after the frequency divider.

Herzel and Piz [11] have defined a system level simulation model 
for a 3rd order PLL using the phase noise of VCO as an Ornstein-
Uhlenbeck type of process.

Hangmann [13] describes a third order event driven model for 
a digital PLL. His model describes very fast event driven behavioral 
model for higher order PLLs with comparable accuracy to a SPICE 
simulation.

Hangmann et al. [14] describe a difference equation approach for 
the analysis of a charge pump PLL which is target to for non-linear 
phase comparators. The authors claim their model is valid over a 
wider range of phase errors as compared to a linear model.

Gardner [15] derived two different stability criteria one for  
second order and another for third order PLLs. Which are called 
Gardner’s .

Van Paemel [16] proposed a behavioral model for the design and 
analysis of charge pump PLLs. The Charge Pump-Phase Frequency 
Detector (CP-PFD) is a three-state device(UP state, DOWN state and 
a “NULL” state) that undergoes state transitions when the output 
state of the CP-PFD changes. If CP-PFD is in one of these states, then 
within that state the PLL can be described by linear state equations. 
Van Paemel [16] lists two state variables first being the pulse width of 

Figure 1: A DDS+DAC feeding a second-order PLL.
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This paper seeks to answer whether there an analytical 
relationship between the Lock time of a second order PLL and its 
PM. The second question is there an analytical relationship between 
the derivative of the Lock time of a second order PLL and its PM. 
The third question is that what is the relationship between the jitter 
variance of a second order PLL and its PM. The fourth question is that 
what is the relationship of the variation of jitter variance with respect 
to the PM of a second order PLL. Now we extend the relationship 
between DC and PM.

24 214
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=                                           (11)

In Equation (11) φ  is the PM of a second-order PLL and ζ is 
its DC. Inverting and squaring both sides of Equation (11) a new 
expression for the DC in terms of PM is obtained as
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Lock Time and Phase Margin
Lock time of any PLL is defined as the time required in 

achieving an output frequency which is within a small but specified 
range of a desired output frequency when a frequency step of 
bounded size is applied to the PLL. A small lock time is necessary 
for communication systems such as UMTS (with switching time 
< 200usec. Lock time is inversely proportional to the PLL loop 
Band-Width (BW).

A closed-form expression relating lock time and DC of a second-
order Type II PLLs has been derived. Locking is achieved in a PLL 
when the output frequency of PLL approaches a specified frequency 
after the application of a frequency step to the PLL. An absolute 
frequency difference between the frequency of output of PLL and the 
target frequency, must be specified to define Lock Time.

The frequency step applied to the PLL must be within the lock 
range of the PLL which is defined as the maximum frequency range 
within which the PLL can track its input frequency. Lock time has 
been defined by Banerjee [2] as:
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In Equation (13),  is lock time of a second-order type I 
PLL. Tlock  is the time required for PLL to reach an output value 
which differs from the final target frequency by a specified deviation 
(specified by tol). The frequency step applied to the PLL is (f2-f1) (Hz). 
T2=R2C2 is the time constant of the PLL loop filter (sec). If 12 <<T  
(an approximation that is reasonable in PLLs), the expression for lock 
time can be further simplified as:
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An expression for the derivative of lock time with respect to the 
DC can be written as:
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the phase detector and the second being the capacitor voltage of loop 
filter. These two state variables are used to compute the next pulse 
width of phase.

Carlosena [17] proposes a low-pass filter in a PLL termed as a 
Przedpelski Filter. He proposes an additional frequency feedback 
loop for accelerated locking.

Hedayat [18] extended Van Paemel’s [16] method to allow 
a variable time step enabling greater accuracy. Hedayat’s model 
requires six internal states but limited to fourth order PLLs.

Wang [19] has provided a method to suppress spurs in Fractional 
N PLLs using re-quantization methods.

Abramowitz [20] has provided the application of Lyapunov’s 
stability to third order PLLs. His model assumes a forward path with 
a non-linear sinusoidal phase detector.

Monteiro [21] has written about PLL stability and considered 
criteria for Hopf bifurcations in a 3rd order PLL.

Abdelfattah [22] performs an analytical and comparative study 
on the design of the loop filter in (PLLs). His method allows the 
design and component selection for various loop filters.

De Almeida et al. [23] proposes a new find of phase detector which 
replaces a multiplicative phase detector with a more generalized 
phase detector utilizing the q-product which demonstrates improved 
linearity and PLL pull-in. Kim et al. [24] describe and 1.35 GHz all-
digital phase-locked loop (ADPLL) with an adaptively controlled loop 
filter. Adaptive Loop Gain Controller (ALGC) effectively reduces the 
nonlinear characteristics of the bang-bang phase-frequency detector 
(BBPFD).

Weigand et al. [25] has created a new technique for simulating 
a PLL with nonideal charge pumps featuring dead zones, current 
source mismatches, charge pump leakage, and nonlinear VCO 
transfer functions.

In a second-order system such as the PLL of the DAC-PLL, the 
PM is the value of the phase shift for which the amplitude gain is 
0 dB or unity gain. In a PLL, PM of a second order system can be 
controlled by controlling the DC [26]. The DC determines how fast a 
second-order PLL can settle down after a unit step function is applied 
at the input of the PLL. Underdamped systems with DC<1 have 
faster rise times for step input, are oscillatory and exhibit lower PM. 
Overdamped systems with DC>1  are non-oscillatory with higher PM 
compared to underdamped systems.

The expression relating these parameters PM and DC of a second-
order PLL is given by Dorf [26].
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Equation (8) is an expression for the PM of a second-order PLL. 
The natural frequency of a second-order PLL is expressed in terms of 

φKKV ,  and time constant )(τ ,
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= =                                  (9)

In Equation (10) the DC of the PLL is written as
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Simplifying Equation (15), one obtains a second expression for 
the derivative of lock time with respect to the   DC,
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Equation (16) is the derivative of the lock time has two terms. 
The first term of the derivative is dependent on the frequency step 
size and the tolerance of frequency deviation. The second term in 
Equation (16) is a function of the DC. The relationship between 
natural frequency and loop BW in terms of DC is written as:

2c nω ζω=                          (17)

By substituting Equation (17) in Equation (16) a new expression 
for the derivative of Lock time is obtained in terms of loop bandwidth 
and DC is written as:
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Equation (18), relates the derivative of the lock time with the loop 
BW with natural frequency and DC. Such an expression (Equation 
18) has not been discussed in open literature.

Figure 2 illustrates the variation of the lock time of a second order 
PLL with change in PM for different values of natural frequency.  It is 
observed that the lock time of a second order PLL drops rapidly as the 
PM is increased. The second observation is that Lock Time is almost 
inversely proportional to the natural frequency of the PLL.

The result of Figure 2 tracks generated for a frequency step size of 
1 MHz (f2-f1) and a frequency tolerance (tol) of 1 kHz. Banerjee [2] 
(Equation 16.39) provides the relationship between PM and DC as:

24
1)tan(sec
ζ

φφ =−                                        (19)

In Equation (19),  is the PM of a second-order PLL, and  is 
the DC of a second-order PLL. Taking derivative of both sides of 
Equation (19) with respect to the PM one obtains:
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From Equation (20) the derivative of the Lock Time to the PM 
can be written as:

( ) ( )2 2 3
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Equation (21) for the derivative of Lock Time with respect to 
PM has not been derived in open literature. A perturbation of either 
KV (VCO sensitivity) or capacitance of Loop filter (C) leads to a 
perturbation of the PM. Perturbation of the Lock Time for a nominal 
PM value is illustrated in Figure 3.

Lock time perturbation vs. PM (Figure 3) was generated for an 
input frequency step size of 1 MHz and a frequency tolerance of 1 
kHz. The X –axis of Figure 3 is the initial PM before perturbation 
and the Y-axis is the perturbation of the lock time(microseconds). 
In Figure 3, the lock time is defined as the time required to settle 
within 1 kHz of the final frequency. The natural frequency of the 
PLL is fixed at 10 MHz frequency.  At PM levels higher than 55o 
the variation in lock time is lower for a given PM. Equation (22) 
relating the lock time to tangent of the PM has been derived for 
the first time.
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A third expression relates the lock time of a second order PLL 
to the loop filter time constant. This has not been discussed in open 
literature and relates lock time to PM as:
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1 tan
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lock
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                  (23)

Equation (23) is relates the PLL Lock time to its filter time 
constant and half of PM.

Figure 2: Lock Time vs. PM for Type I second-order PLL for 3 different values of natural frequency (A: 2.6 MHz; B: 5.2 MHz; C:7.8 MHz).
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The relationship between jitter and PM for a Type I and Type II 
second-order PLL is explored in this section. The derivations in this 
section originate in [1] and [6].  Type I PLL has been discussed in the 
previous sections. A brief discussion on Type II PLL in terms of its 
transfer function is also presented. The Type II PLL of second-order 
has an additional zero as compared to a Type I second-order PLLs.

The block diagram of Figure 4 illustrates the loop filter, VCO, 
divider and PFD of a second-order Type II PLL. Transfer function of 
a Type II PLL is written as:

2

1 2
2

2 2 1
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Dividing numerator and denominator of Equation (24) by the 
transfer function of a Type II PLL can be written as:
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For a Type II PLL the natural frequency is defined as:

1τ
ω

N
K

n =               (26)

The DC for a Type II PLL can be written as:

2( / 2)( / )N Kζ ω τ= +                (27)
This section discusses the relationship between Jitter and PM of 

a Type I and Type II second-order PLL. Type II PLLs have a zero 
in their transfer function unlike Type I PLLs. Different transfer 
functions for Type I and Type II PLLs as illustrated in Figure 5.

The period jitter variance is related to the phase noise generated 
by various sources of noise within the PLL through Fourier integral 
[6].

0

0

/22 2
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f θσ π
π −

= ∫             (28)

In Equation (28), )( fSθ  is the phase noise of a frequency source, 
0f  is the center frequency, 2 ( )J kTσ  is the variance of period Jitter, 
Bk is the Boltzmann’s constant, and T is the absolute temperature. 

If )( fSθ  is known, Equation (28) facilitates the computation of jitter 
variance when phase noise is known. Considering only the noise 
source of VCO, a relationship between Root–Mean-Square (RMS) 

jitter variance, damping coefficient and natural frequency have been 
given by Lee [1] for a second-order Type II PLL.

2
2 ( )

4
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A
n n

cc fσ ζ
ζω ω

= +                      (29)

In Equation (29), 2
Aσ  is the Variance of absolute jitter at PLL 

output (sec2), WNc  is the Jitter coefficient for white noise (unit 
seconds), FNc  is the Jitter coefficient for flicker noise (dimensionless) 
In turn, nω  and ζ  is the Damping coefficient of Type II second 
order PLL. Function )(ζf  is the non-linear Flicker noise function. 
Equation (29) comprises two terms – the first term is the contribution 
of the white noise and the second term is the contribution of the 
flicker noise. The flicker noise coefficient is a function of the damping 
coefficient and PM of the PLL. For an underdamped PLL, the flicker 
noise coefficient has been described by Lee [1] as:

1
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The corresponding expression in Lee [1] for the flicker noise 
coefficient of an over-damped PLL is
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Operator Re in Equation (31) implies only the real part of the 
hyperbolic inverse is considered. Current paper relates the PM to 
the jitter variance for a Type II PLL. Rearranging Equation (30) one 
obtains:















−
−=− −
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1
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ζ
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The RHS of Equation (32) is simplified as:

( )ζπζζζ 12 sin2/1)( −−=−f                    (33)

The fourth root of both sides of Equation (12) yields an expression 
for the DC in terms of PM written as:

( )( )2
4 1/ 16 cot 1/ 2 4ζ ϕ= + −              (34)

Substituting  from Equation (34) in Equation (30), the flicker 
noise function can be written as:

Figure 3: Perturbation of lock time with nominal PM. 
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Equation (35) relates the  in terms of PM ‘ . Substituting 
Equation (35) into the expression for jitter in Equation (29) one 
obtains an expression for the jitter variance.
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Equation (36) for an underdamped Type II PLL relates the PM 
and Jitter variance for the first time in open literature.

Alternative relationship between PM and absolute jitter for 
type II PLL

The relation between PM and absolute jitter for type II PLL can be 

analytically derived using another procedure. The loop bandwidth 
)( cω  can be expressed as a function of natural frequency )( nω  

[2] as:

2c nω ζω=                                           (37)

Damping coefficient  can be expressed as a ratio of loop BW 
and natural frequency. From the Equation by Banerjee [2]

( ) ( )24/1tansec ζφφ =−                                  (38)

Modifying Equation (38) by taking a square root one obtains

( )cos / 2 2 sinζ ϕ ϕ= −                                    (39)

An expression for the variance of absolute jitter is written as:
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Substituting Equation (39) into Equation (40) a new expression 
relating the variance of the Jitter with the PM is written as
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 −
 − = +

−
−− −

  (41)

Equation (41) facilitates the determination of the absolute jitter 
for the under-damped Type II second-order PLL in terms of PM. 
Such an expression is not expressed in open literature.

For the over-damped Type II second-order PLL, the jitter variance 
expression (Equation 43) includes a hyperbolic term.

Figure 4: Type II PLL illustrating loop filter with one pole and one zero.

Figure 5: Difference in TFs of Type I and Type II PLL.
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Substituting  DC from Equation (40) in Equation (42), the jitter 
variance is written in terms of the PM as

( )

( )
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Re tanh
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−   −− 

(43)

Equation (44) relates the absolute jitter for over-damped Type II 
second-order PLL in terms of PM. Such an expression is not expressed 
in open literature. Figure 6 depicts  jitter variance vs. PM for various 
values of nω .

Figure 6 illustrates that greater the PM, lower is the jitter variance 
for Type II PLL. Figure 6 is computed for the values of c=1.67 x10-
17sec; cFN=1.6 × 10-11. For the same PM (e.g. 50o), the jitter variance 
is significantly reduced as nω  is increased. In paper [6] closed-form 
jitter variance models for type I PLL of second-order PLLs are derived. 
A noise figure K for the VCO noise source (white) is defined as

2
0

4
ω

π VCONK =                                   (44)

Parameter K2 is the figure of merit of the VCO. In Equation 
(44), oω  is the center-frequency of VCO, and VCON  is the Phase 
noise of the VCO, dBc/Hz. In Equation (44), the units of K are 
1/ HZ . The VCO noise term VCON  is a product of two terms, 

2 2 2 2 2/ /nK e Hz V V HZ= × . The unit of the constant K2 (gain of the 
clock source oscillator) is Hz/V and the unit of the white noise voltage 

en  is volts / HZ . Figure 7 illustrates the change in jitter variance with 
the change in PM for an underdamped PLL. Jitter variance for Type I 
second-order under-damped PLL [6],
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The damped frequency ( )dω  is defined as

21 ζωω −= nd
                              (46)

In turn, the additional phase shift is defined as
21 1cos ζθ −= −             (47)

Figure 7 illustrates the change in jitter variance with the change in 
PM for an underdamped PLL.

In Figure 7, the DC ranges from 0.42 to 0.9 with figure of merit 
85.4 10 secK −= × . In Figure 7 each value of PM corresponds to a 

unique value of DC.  This value of DC  is substituted into the time-
invariant (not a function of part of  in Equation (47) to compute 
the Jitter variance. Exponential term in Equation (47) goes to zero 
when interval T∆  goes to infinity.  Figure 7 illustrates that the RMS 
jitter value is reduced from 5 × 10-12 sec2 to 3.2 × 10-12 sec2 as the PM 
increases from 45o to 75o.To simplify one must consider the function 
within the brackets in Equation (46) which is the multiplicative part 
of jitter variance and independent of .

( )
( )

( ) ( )
2

sin cos
, ,

2 1
d d

n
n n

T Te TT
ω θ ωζωζ ω

ω ζωζ

 ∆ + ∆ − ∆ Ψ ∆ = −  
−    

(48)

In Equation (48), T∆  is the Time interval under consideration 
for Jitter measurement. ( )Tn ∆Ψ ,,ωζ  is the jitter variance function 
which is dependent only on nandT ωζ,∆ .

Settling time of a second order PLL is written as:

4
sPLL

n

T
ζω

=                                            (49)

Figure 6: Jitter Variance vs. Phase Margin for Type II PLL (A: nω =3.46 × 104 rad/sec; B: nω =4.9 × 104 rad/sec; C: nω =6.9 × 104 rad/sec).
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Figure 7: RMS jitter predicted by Mansuri’s [27] model for under-damped 
second-order PLL (VCO noise).

Figure 9: Jitter Variance function for fixed T∆ vs. PM.

Figure 8: Jitter Variance function vs. T∆  for 3 values of PM for second-
order under damped PLL.

Figure 10: Jitter variance function ( )Tn ∆Ψ ,,ωζ  vs. settling time of a 
second-order type I PLL.

Figure 8 shows the variation of Jitter variance with T∆ , the time 
interval for jitter variance estimation for various values of PM. The Y 

axis of Figure 8 is the Jitter variance divided by
2
0

2
2 4

ω
π VCONK = , figure 

of merit of the VCO. After an initial transient, only the steady state 
part contained in the first term of Equation (45) dominates, this is 
when T∆  is larger.

Figure 8 illustrates that the component which is a function of 
time interval ζω andT n,∆  damping coefficient exhibits oscillatory 
behavior and settles down to a final value within T∆ =2 × 10-7. Higher 
the PM lower is the final value of jitter variance and lower the initial 
high part of the jitter variance. Figure 8 is illustrated for 3 values of 
PM for and under-damped PLL. When PM is varied between 42o 
and 66o, the initial peak reduces from 26 × 10-8 to 1.2 × 10-8. Figure 9 
illustrates the jitter variance function in [6] vs. PM for a fixed value of 

T∆  for second-order Type I PLL

Figure 9 illustrates that Jitter variance 2
Tσ ∆  for the PLL is reduced 

as the PM is increased. Figure 10 illustrates the variation of the Jitter 
variance function with settling time of a second-order PLL.

Figure 10 illustrates that the jitter variance function increases 
with increased settling time (lower DC).

A plot of the jitter variance vs. PM for the over-damped PLL is 
illustrated in Figure 11.

Figure 11 illustrates that the higher value of PM reduces the value 
of jitter variance of a second-order overdamped PLL.

Jitter Variance vs. PM of a II Order PLL
An analytical contribution in the form of an extension to models 

described in [27] has been presented in this section.

Figure 11: Jitter variance vs. phase margin.



Citation: Mazumdar D, Kadambi G, Vershinin Y (2019) Relationship between Jitter Variance, Lock Time and Phase Noise of a Second-Order PLL. J Electr Eng 
Electron Technol 8:1.

• Page 9 of 10 •

doi: 10.4172/2325-9833.1000172

Volume 8 • Issue 1 • 1000172

Analytical relationship between the PM ( )φ  and the periodic 
jitter of PLL is given in Equation (51).

φ
φ

ζ
sin12

cos
−

−                                        (50)

Substituting DC in the jitter variance expression of [6] for 
underdamped PLLs in Equation (51),
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Excluding the figure-of-merit  the variance can be written as
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Damped frequency is defined in terms of )( nω  and PM as

( )φ
φωω

sin14
cos1
−

−= nd                                          (53)

Equation (53) is new and relating jitter to PM. An expression for 
the derivative of jitter variance with respect to the PM of a second-
order PLL is derived here. The first term is the derivative of the first 
additive term of the RHS of Equation (52),
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The second term is the derivative of the exponential term of the 
second additive term in Equation (52) excluding the common factor 
K2,
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Which is expanded to
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The third term is the derivative of the sinusoidal term of the 
second additive term in Equation (54). Substituting. 21 ζω −n  and 
the additional phase shift angle.

21 1cos ζθ −= − .

The final substitution is ( )( )φφζ sin14/cos2 −=
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The combined expression for the derivative of Jitter variance with 
respect to phase margin is written as
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Equation (58) is an original contribution of this paper. A 

derivative of the Jitter variance with respect to PM is not reported 
in open literature. It is useful for optimization techniques such as 
Lagrange multipliers applied to a PLL.

Conclusion
New equations have been derived for the variation of Lock time 

with PM. Lock time and perturbation of Lock time vs. PM has been 
characterized for the first time in a detailed way. Lock time has been 
related to half of phase margin for the first time in a closed form 
expression.

New equations have been derived for jitter variance in terms of 
PM and DC based on Lee’s [1] model for Type II PLLs [1]. Using 
Lee [1] closed for equations, Jitter variance has been characterized in 
closed form for both underdamped and overdamped PLLs.

For the first time equations relating Jitter variance with PM for 
the closed for expressions due to Mansuri [8] have been derived. 
Mansuris [27] equations have been extended to cover jitter variance 
as a function of PM.  New curves have been published for Jitter 
variance vs. time interval for the first time. New equations have been 
derivd for the variation of DC with PM.
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