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Abstract
In this paper we present the sensitivity analysis on regime switching 
models applying the techniques of Malliavin calculus. As is well 
known, risk management in portfolio pricing and hedging is often 
achieved by estimating the Greeks, which are price sensitivities 
relative to variations in the model parameters. By developing this 
method for sensitivity analysis, we have multiple versions of Greeks 
expression, optimization by minimizing the variance of weight is 
available among those alternatives. Although the classical Malliavin 
calculus approach requires the differentiability of the payoff function, 
we extend the results for models with non-differentiable payoff 
function.
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recent works on computation of Greeks in asset price models, c.f. also 
Denis and Liu [8,9].

On the other hand, Regime-switching models have been 
introduced by Hamilton et al. [10] in discrete time and are among the 
most popular and effective risky asset models. The regime switching 
property is reflected in the changes of states of a Markov chain, which 
stands for the influence of external market factors. Intensive researches 
about asset pricing and trading are modelled with Markovian regime-
switching, such as Yao et al. [11], Kim et al. [12], Liu and privault 
[13,14]. In this paper we compute the Greeks by Malliavin calculus in 
a generalized Black-Scholes model with regime switching that reflects 
the underlying changes in the state of the economy and extend the 
results for models with non-differentiable payoff function.

Applying the Wiener-Malliavin calculus, we compute the 
sensitivities in the framework of the regime switching model (2) 
below. For any payoff function 1 ( )bcφ ∈   with bounded derivative, 
value function V given by (3) below, and any g: {1,…,m}→(0,∞), we 
show by Proposition 3.1 that
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efficient Monte Carlo simulation is achievable, by Section 4, the choice 
of g such that g(i)=σ(i) for all i∈{1,…, m} minimizes the variance of 
the weight of ∆. Other Greeks like Γ, vega, ∧ are similarly computed 
in Subsection 3.2-3.4. Moreover we note that,

i) Given 1 ( )bcφ ∈   differentiating the payoff function φ inside 
expectation tends to be easier than our approach applying Malliavin 
calculus.

ii) In the right-hand of the expression (1), no derivative of the 
payoff function φ appears any more.

Based on these observations, it is tempted and necessary to relax 
the restriction of φ. Therefore, by Section 5, we extend the results to a 
class of non-differentiable payoff functions.

Formulation
Consider a standard Brownian motion (Wt)t∈R+ and a Markov 

chain (αt) t∈R+, assume that they are independent and the Markov chain 
αt has a state space M={1,…, m}.Consider the stochastic process (Xt)
t∈R+ given by the following SDE:

dXt=Xt[µ(αt)dt+σ(αt)dWt], 0 ≤tT, 			               (2)

with X0=x0 >0, α0∈M, and µ:M→  and σ: M→(0, ∞), are deterministic 
functions. Denote the filtration generated by (Bt)t∈R+ and (αt)t∈R+ as (Ft)t∈R+. 
Given a payoff function φ on  consider t

he value function V(x0, α0) defined as follows:

V(x0, α0)=e-rTE[φ(XT)|X0 = x0, α0]			              (3)

Where (Xt)t∈[0,T] follows SDE (2), r>0 denotes the risk-free rate. 
Then we proceed to compute the sensitivities of V(x0, 0) to the changes 
of coefficients in this model, such like X0=x0, µ, σ and even Q-matrix. 

Introduction
Emerging interests focus on sensitivity analysis with its wide 

application in risk management, especially for hedging strategy. In 
particular, Greeks are the sensitivities with respect to parameters in 
the generalized Black-Scholes’ models. Starting from Fournié et al. 
[1], Malliavin calculus is applied for computation of Greeks such 
like Delta (∆), Rho (ρ),respectively representing the sensitivities of 
option value to spot price, risk-free rate. Via this approaches, fast 
algorithms for Greeks computations are designed. Following the 
method initiated on the Wiener space in Fournié and El-Khatib et 
al. [1,2] calculates the Greeks in a model of jump process driven by 
Poisson jump times. By Debelley et al. [3], sensitivities in a jump 
diffusion model are computed by using the Malliavin calculus. By 
Davis et al. [4], Malliavin calculus is applied for Levy processes and 
integration by parts formula is developed for Greeks calculation, 
where the computational effciency is assessed by comparison through 
Monte Carlo simulation. Using the Malliavin calculus on Poisson 
space, [5] computes the sensitivities for European and Asian options 
simulated by jump type diffusion. Applying the Malliavin calculus 
in time inhomogeneous jump-diffusion models, Denis et al. [6] 
obtains an expression for the sensitivity Theta of an option price as 
the expectation of the option payoff multiplied by a stochastic weight. 
Also, Bayazit  et al. [7] presents sensitivities for options when the 
underlying dynamic follows an exponential Levy process. For other 
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To begin with, we recall some Malliavin operators. For any random 
variable F∈L2(Ω,P) of the form: 

( )1 s s s s 0 s0 0 0
( )dW ,..., ( )dW , ( )ds

T T T

nF f h h hα α α= ∫ ∫ ∫
For n +∈ , 1 1( )nf c +∈  , and deterministic functions hi: M→R, 

i∈{0,1,…,n}. Given F∈L2(Ω,P) in the form of (3), the gradient of F is 
defined by

( )1 s s s s 0 s0 0
1

0
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n k t

T
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For t∈[0,T]. For any deterministic function g : MR we define

0
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0
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T

g t g tD F D F dtα= ∫ 				              (6)

for any random variable F∈L2(Ω,P) in form of (3).

Computation of the Greeks based on the Partial 
Malliavin Calculus

In this section, we proceed the computation of the sensitivities 
of V(x0, 0) to the changes of coefficients in this model, such like X0, 
µ, . First in this section, we assume that 1 ( )bcφ ∈  and has bounded 
derivative, extension to non-differentiable payoff function will be 
shown in Section 5.

Variations in the initial price

The sensitivity of value function (2) to the initial price X0 is given 
by the following proposition:

Proposition 3.1 For any payoff function 1 ( )bcφ ∈  with bounded 
derivative (Xt)t∈[0,T], defined in (2) and any g: M→(0,∞), we have
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First we check that the right-hand side of (7) is well defined by the 
following points,

i) , 0gσ ε≥ > a.s. for some ε>0, since σ(i)>0 and g(i) > 0 for all iM

ii) We show that φ(XT) W(g)/ , gσ is integrable. Since
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and Eφ(XT)2]<∞ for φ is a bounded function, we claim the integrability 
of φ( XT)W(g)/〈σ,g〉.

For the left-hand side, we need to show that V(x0,α0) is 
differentiable with respect to x0. Since φ has bounded derivative, there 
exists a K0>0 that |∂φ(x)/∂x|<K0 for any x∈R. We have the solution to 
the SDE (2)

2
0 u u0 0

1exp ( ) ( ) ( )dW , [0, ]
2

t t

t u uX x du t Tµ α σ α σ α = − + ∈ 
 ∫ ∫       (8)

it follows that 
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which is uniformly bounded by an integrable random variable XTK0/x0. 

Therefore by V(x0,α0) is differentiable with respect to X0=x0 and 

[ ]0 0
0 0 0

0 0

0 0 0
0

( , ) ( ) | X ,

( ) | X ,

rT
T

rT T

V x e E X x
x x

Xe E x
x

α φ α

φ α

−

−

∂ ∂
= =

∂ ∂

 ∂
= = ∂ 

		              (9)

Then we continue to prove (7). It follows from (8) that XT∈L2(Ω,P) 
in form of (2), and we have

DgXT=XT〈σ,g〉>0				              (10)

Since the payoff function 1 ( )bcφ ∈  , φ (XT)∈L2(Ω,P) and is in 
form of (2), we have the following chain rule:

Dgφ (XT)= φ’(XT) DgXT, for any g: M→(0,∞). 		             (11)

Hence by (8-10) we see that
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Denote by Fα a filtration generated by {αt; t∈[0,T]}, it follows from 
the integration by parts formula by Lemma 1.2.1 in Nualart et al. [15] 
and the independence between (Wt) t∈[0,T] and (αt) t∈[0,T] that, 
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for any g: M→(0,∞). By (12,13), we obtain,
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Variations in the initial price for second order

As in most context, the second derivative of the value function 
with respect to the initial price is denoted as . Similarly, we have,

Proposition 3.2 For any payoff function 1 ( )bc Rφ ∈ with bounded 
derivative, g: M→(0,∞), and (Xt) t∈[0,T] defined in (2), we have

Where 
0

, : ( ) ( )ds
T

s sg gσ σ α α= ∫  and 2

0
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Where 〈σ,g〉>0 a.s. By the chain rule of derivative and the 
independence between (Wt) t∈[0,T] and (αt) t∈[0,T] we have
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where in the last line we applied the integration by parts formula. 
Substituting (14) into (13), we see that
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Variations in the diffusion coefficient

The variations in the diffusion coefficient is denoted as Vega, 
precisely,

0 0( , )V xvega α
σ

∂
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∂
where σ is a constant parameter. In our model, σ(.) is a function on 
M, so there is no direct way of derivative. Instead, we introduce the 
perturbed process:
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For t∈[0,T], we compute Vega by the following proposition.

Proposition 3.3 For any payoff function 1 ( )bc Rφ ∈ with bounded 
derivative, g: M→(0,∞), and (Xt) t∈[0,T] defined in (2), we have
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for any deterministic function g: M→R, ε∈R. Note by (18) that
,

0
lim t tX Xσ ε

ε →
= , t[0,T] a.e.,

the expression Vega in (18) is obtained by passing ε to 0 in (19).

Variations in the drift coefficient

Similarly, we introduce the perturbed process for drift coefficient:
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Through a similar computation as that of Vage, we have the 
derivative of Vµ,ε(x0,α0) with respect to ε:
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for any deterministic function g : M → R and ε∈R. Therefore, we have 
the following Proposition 3.4 for Lambda.

Proposition 3.4 For any payoff function 1 ( )bc Rφ ∈ with bounded 
derivative, g: M→(0,∞), and (Xt) t∈[0,T] defined in (2), we have
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Optimization of Convergence

In this section, we aim at figuring out an optimal choice of g 
for efficient Monte Carlo simulation. Based on the computation of 
Theta in a jump diffusion model, Proposition 4.1 of Denis et al. [6] 
minimizes the variance of the weight of Theta. In our model, there 
exists such a problem too. We can minimize the weight by choosing a 
optimal g ∈ G. We gain a similar conclusion to that in Denis et al. [8].

Proposition 4.1 The weight of Delta in (7) is (g):=W(g)/〈σ,g〉, then 
the infimum on {var[Ψ(g)]; g: M→R}is attained when

g(i) = c(i) i ∈M;

with a constant c > 0, and is given by

[ ] ( ) 1
2

0
inf ( ) ( )dt

T

tg G
Var g E σ α

−

∈

 
Ψ =  

 
∫

Proof. Since W(g) and 〈σ,g〉, are independent, we have E[Ψ(g)]=0 and 

Var[Ψ(g)]= E[Ψ(g)2]				               (23)

For any g : M → R, we see that 
0

( ) ( )
T

s tg dtσ α α∫ >0, with the 
isometry property of W(g), we have

( )
2

2 0
2

0

( )
( )

( ) ( )

T

t

T

t t

g dt
E g E

g dt

α

σ α α

 
 

 Ψ =   
 
  

∫
∫

		             (24)

By Cauchy-Schwarz inequality,

( )2
2 2

0 0 0
( ) ( ) ( ) ( )

T T T

t t t tg dt dt g dtσ α α σ α α≤∫ ∫ ∫
Therefore, by (4.1)-(4.3), we obtain that

[ ] ( ) 1
2

0
( ) ( )

T

tVar g E dtσ α
− 

Ψ ≥  
 

∫
In the case of Denis et al. [8], it is proved that the best function 

chosen in the weight is the constant number. However, in our case, 
{g(i) = cσ(i) ; i ∈ M} obtains a faster convergence than {g(i) = 1; i ∈ M} 
does, as shown in the following (Figure 1).

Extension to Non-Differentiable Payoff Function
In this section, by a similar arguments as Kawai et al. [16], we 

show by Proposition 5.1 that the conclusion in Proposition 3.1 below 
is able to be extended for non-differentiable payoff function in the 
class ∧(R) defined as in Kawai et al. [16],

{ }
1

( ) : : | 1 , 1, ( : )
i

n

i A i L
i

R f f f n f C
=


Λ = → = ≥ ∈


∑   

Ai are intervals of R},

Where

CL(R):={f∈c(R;R)| |f(x)-f(y)|≤k|x-y| for some K≥0}

Proposition 3.4 For any payoff function 1 ( )bc Rφ ∈ with bounded 
derivative, g: M→(0,∞), and (Xt) t∈[0,T] defined in (2), we have

T 0 0 0
0

( )(X ) | ,
,

rTe W gE X x
x g

φ α
σ

−  
∆ = = 

  
		           (25)

Figure 1: Computation of Delta with respect to the number of samples.
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Where 
0

, ( ) ( ) 0
T

s sg g dsσ σ α α= >∫
Proof. For any φ∈∧(R), there exists N≥1 and a sequence {ki∈R+; 

i=1,…,N}and a list of disjoint sets (A1,…,AN) such that 

{ }
1

( ) ( )1 ( )
N

i Ai
i

x f x xφ
=

= ∑ ,  xR			             (26)

where fi(x) ∈ CL(R; R) with

|f(x)-f(y)|≤ki|x-y|,  x,y∈Ai, i=1,…,N, 			            (27)

And Ai=(ai-1, ai], i=1,…,N,

With a0= -∞ and aN=∞

(i) First, we prove that (25) holds for φ∈∧(R)C1(R) Recalling 
the definition (2.1) of (Xt) t∈[0,T], we let X0=x0>0, and for any ε∈R we 
define [ , ]0( )t t TX ε

∈ by

0

0

:t t
xX X

x
ε ε+

= ,  t[0,T]				               (28)

Without letting φ bounded, we can also show that φ(XT) is 
integrable. Since φ is continuous, by (27) we see that

|φ(XT)- φ(X0)|

( )
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∈ −
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∈ −

≤ − + −

+ −

≤ + + −

+ −

∑

∑

	            

which is integrable, hence the integrability of φ(XT ) is proved. On the 
other hand, without the bounded derivative of φ, we also show that 
(10) holds, namely,

T
0 0 00

T
0 0 00
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		          (29)

By (27) and definition (28) of TX ε we see that

( )T

0 1 10 0

( ) (X ) 1lim | | lim max | | maxT T T

i n i n

X X X ki
x

ε ε

εε

φ φ
ε ε→ ≤ ≤ ≤ ≤→

− −
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which is uniformly bounded. Therefore, (29) is proved by Lebesgue’s 
dominated convergence theorem and we have

( ) T
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	        (30)

Relation (26) follows from (31) in the case φ∈∧(R)∩C1(R;R) by 
repeating the arguments from (10) until the end of Subsection 3.1.

(ii) Finally, we extend from φ∈∧(R)∩C1(R) to the class ∧(R). We 
will structure a sequence (φn)n∈N∈∧(R)∩C1(R) approaching to φ∈∧(R). 
By e.g. Theorem 7.17 of Rudin et al. [17] or (3:6)-(3:7) in Kawai et al. 
[16], it suffices to show that for all compact set K (0,∞) we have 

[ ] [ ]0 0 0 0 0 0lim ( ) | , ( ) | ,n T Tn
E X X x E X X xφ α φ α

→∞
= = = 	          (31)

for any x0 ∈ K and
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0
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,n T n Tn x K

W gE X E X
x g
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σ→∞ ∈

 ∂
= − = = ∂   

    (32)

Since φ∈∧(R) is continuous on every interval (ai-1, ai), i=1,…,N, 
there exists a point wise increasing sequence (φn)n∈N∈∧(R)∩C1(R) 
such that 

lim ( ) ( )nn
x xφ φ

→∞
= , x∈R\{a0, a1,…, aN}.		            (33)

For any x∈R\{a0, a1,…, aN}. there exist a Nx>0 such that for n≥Nx 
we have |φn(x)|≤|φ(x)|+1. Since (φn)n∈N∈∧(R)∩C1(R) by (29) we see 
that, for any n≥Nx

1,..., 1,..., 1

1,..., 1,..., 1 , 1,..., 1

1,..., 1,..., 1

1,..., 1,..., 1

| ( ) | | ( ) | max ( max | |)

max max | | | ( ) ( ) |
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∈ −
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which is integrable, hence we can apply the Lebesgue’s dominated 
convergence theorem and by (34) we obtain (32). Regarding (33), it 
follows from (i) that (25) holds for any (n)∧(R)∩C1(R), therefore
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where by (8) we have

2

0 0 0
( ) | ,
,

W gE X x
g

α
σ

 
 = < ∞
 
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Define a decreasing sequence (fn)n∈N of continuous functions:

Fn(x):=E[(φ(XT)-φn(XT))2|X0=x,α0],   n∈N, x∈K.

zy Dini’s theorem, fn(x) pointwise decreases to 0 on K. Therefore, 
by (34), we complete the proof for (32).
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