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Abstract

We propose a quadratic unconstrained binary optimization
(QUBO) formulation of a class of non-autonomous second
order differential equations. The QUBO is tested with certain
examples of ordinary differential equations (ODE’s) using D-
Wave Quantum annealing system.

Introduction
In 1981, Richard Feynman delivered a keynote speech in the first

conference on “physics and computation” held at MIT. In the speech,
entitled “simulating physics with computers”, Feynman asked if
physics can be simulated by a classical universal computer. He
answered the question with a clear “no”. He concluded, “Nature isn’t
classical, and if you want to make a simulation of Nature, you’d better
make it quantum mechanical, and by golly it’s a wonderful problem,
because it doesn’t look so easy.” Following Feynman’s idea, we
propose to simulate some classical laws of nature using a quantum
system. For that we use the Quantum Annealing (QA) method which
falls under the umbrella of adiabatic quantum computation which is an
alternative to the more familiar gate model of quantum computation.
In the last years, QA has attracted attention as an optimization method
for combinatorial problems due to its use of the famous quantum
tunneling property of quantum mechanics hoping to achieve better
optimal solutions for many large engineering problems. In order to
employ a quantum annealing simulation, it is important to reformulate
an optimization problem in the quadratic unconstrained binary
optimization (QUBO) form. In the following section we present a
brief overview of the quantum annealing idea.

BACKGROUND
Adiabatic Quantum Computation (AQC) was introduced by Farhi et

al [1], as an alternative to circuit model quantum computing. AQC
makes use of the adiabatic theorem to solve a given computation in the
following way: One designs the solution of the computation to be
encoded as an Eigen state (it is common to choose the Eigen state to
be the ground state) of a final Hamiltonian H (tf inal) called the
problem Hamiltonian

In order to reach such solution we use a time dependent
Hamiltonian H (t) for which the ground state of the initial Hamiltonian
H (tinitial) is well known and easily prepared. We evolve the initial
Hamiltonian adiabatically until it reaches H (tf inal), we can stay in
the ground state the entire time, and thereby find the solution to our
problem.

Where s (t) is an adiabatic evolution path: a function that decreases
from 1 to 0 as t: 0 → tf, for some elapsed time tf. However, theoretical
obstacles to adiabatic quantum computing make the practical
implementation of an AQC algorithm harder to realize. Quantum
annealing is a method for solving a class of optimization problems
known as QUBO problems. We are given an objective function f: {0,
1} n → R x 7→ f(x) The function f assigns a cost to each
configuration x and we are interested in determining the configuration
that yields the minimum cost, f can be represented by a final
Hamiltonian HF , with costs f(x) on the diagonal and zeros elsewhere.
The algorithm starts at an initial state |ψi of HF (in general, |ψi is
chosen to be a superposition of basis states as this will speed up the
search making multiple computation at the same time) .Quantum
systems can tunnel to other states without the need to go uphill, this
will save us from some unnecessary iterations that classical methods
cannot avoid. A disordering Hamiltonian HD is introduced in order to
be able to control the tunneling probability in a way to favor better
local minima This creates a new time-dependent Hamiltonian whose
ground state will correspond to the optimal(or close to optimal)
configuration f.

At first, the controlling coefficient Γ is set to a high value allowing
the system to explore and wander around the landscape.

As time goes by, Γ (t) is decreased according to a specified
schedule favouring moves towards low cost values of the objective
function. At the end, the quantum system will converge towards the
global minimum (or very close to the global minimum) energy of HF.

Some differences between AQC and QA are worth emphasizing
(see [2]): In AQC, one derives a bound on the probability of finishing
in ground state assuming the system starts in ground state. However,
In QA, one analyzes the probability of converging to the ground state
solution when starting from an arbitrary superposition state.

To solve a QUBO problem on a quantum annealed, the problem
Hamiltonian has to be in the Ising form:

where si , sj ∈ {−1, 1} is a spin variable for the i-th spin, Jij ∈ R
the interaction term between spin i and spin j, and hi ∈ R an external
field interacting with spin i. It is easy to convert the spin variables to
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conventional binary variables xi ∈ {0, 1}, transforming the ising form
to a QUBO form:

In the next section we describe the QUBO formulation of a certain
class of ordinary differential equations.

Ordinary Differential Equations
Qubo Formulation

We consider the following class of non-autonomous second order
ODE:

Where F is a polynomial of a degree at most two and D (t)
represents a driven term . To formulate equation 5 as an optimization
problem, we discretize time and space as shown in the image below:

Figure 1: Discretization of space and time coordinates.

Where ∆t is the time increment, yi represents the y-value
corresponding to cell i and Cj is the column of spatial cells at time tj.

Then we can write y (tj and ˙y (tj ) in terms of the binary variables
xi ’s as follows:

Where Cj is the j-th column of spatial cells associated with time tj,
similarly, we can write ¨y as

Equation 5 can be seen as an optimization problem of the form:

Constraint Formulation For every time slice tj, the solution y(tj )
can only be in exactly one cell of Cj , this statement can be stated as
follows :

Constraint 10 can be realized as the following minimization
problem:

The QUBO for the non-autonomous ODE in 5 can therefore be
written as:
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With Γ a penalty constant. In the next section we benchmark this
result against some examples of ODE’s of type 5

Numerical Tests
To validate the developed QUBO, different examples of ODE are

considered:

Solution to 12 is of the form y(t) = 1 t 2 . We make a python code
and run the corresponding QUBO for 12 on the D-Wave Advantage
system. Results of the simulation are depicted below.

Figure 2: Optimal configuration returned by the quantum annealed
for the QUBO of equation 12: yellow cells are cells where xi = 1 and
purple cells corresponds to xi = 0.

We fix the initial condition y(t = 1) = y281, this corresponds to the
left upper corner being yellow We have obtained the behaviour of 1 t 2
function as expected from a solution of 12.

Figure 3: Optimal configuration returned by the quantum annealed
for the QUBO of equation 13: yellow cells are boxes where xi = 1 and
purple cells corresponds to xi = 0 we obtain the behaviour of arc
tangent function which is expected from a solution to equation 13.

C) Finally, we consider the ODE describing the harmonic oscillator
motion in the case of simple motion and damped motion. 1) Simple
harmonic motion

ω = 1, initial velocity v0 = 3 (b) connected points of graph a

The returned optimal configuration shows a cosine like behavior,
this is in line with solutions to 14. 2) Damped harmonic motion
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ω = 1, initial velocity v0 = 3, ν = 1.5

(b) Connected points of graph a

Indeed we have obtained the expected behaviour for a damped
oscillator with ν 2 < ω.

Conclusion
We have provided a new way to solve a class of non-autonomous

ordinary differential equations using quantum annealing. The strategy
we have used to formulate the QUBO is a new one and may be applied
to further problems.
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