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Abstract
This research underlines an automated approach for detecting 
sleep apnea events from sleep studies. The Polysomnogram 
test is the gold standard for diagnosing sleep apnea. 
Unfortunately, it is expensive, time-consuming, and 
uncomfortable for patients. We selected signals that can be 
simply obtained by using a portable fingertip pulse oximeter 
and hexoskin smart shirt. Hence, the cost of polysomnography 
will be reduced by utilizing less equipment and sufficient at the 
same time. Therefore, the scientific value of this research is to 
simplify the used ways by other sleep experts in this field. Two 
sleep apnea databases were used to train and test four deep 
learning models. Three physiological signals were combined to 
form one window of 60 seconds in size. Deep learning 
approaches were proved to be sufficient in detecting apnea 
events depending on data quality and the neural network 
architecture. The hybrid model outperformed other models with 
97% and 92% of accuracy.
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Introduction
Sleep apnea is a respiratory-related disease where breathing pauses 

and repeatedly starts during sleep. It occurs when either the airway 
collapses or the brain cannot successfully send the signal to the 
breathing muscles. There are two main cases for sleep apnea; 
Obstructive Sleep Apnea (OSA) and Central Sleep Apnea (CSA), 
which in no air comes in or out of the lung for few seconds to minutes 
and can, happen about 30 times or more per hour [1]. Hypopnea is a 
partial blockage of the airway with at least a 30% decrease in airflow 
enduring at least 10 seconds and with 3% oxygen desaturation [2]. 
Neglecting the treatment of sleep apnea leads to severe diseases, such 
as high blood pressure and heart attack [3].

Polysomnography (PSG) is used to diagnose the patient who spends 
an entire night or more in a sleep laboratory. PSG is often ambulatory, 
so patient can sleep at home. However, sleeping in the lab may occur 

uncomfortable because of the connection of the electrodes with 
different positions of the body [4]. Physiological signals are divided 
into two categories: Simple signals measured by sensors that are 
integrated into smart wearable devices and complex signals obtained 
by professional tools while transferred to user devices. The simple 
signals are the heartbeat and snoring, whereas the complex ones 
include Electrocardiography (ECG), Electroencephalography (EEG), 
Electromyography (EMG), Electrooculography (EOG), Oxygen 
Saturation (SpO2), Nasal airflow, and blood pressure. sleep experts’ 
diagnose this disease by monitoring and analyzing these signals during 
the total time of sleep. The current treatment is the titration of 
continuous positive Airway Pressure (CPAP), Bilevel Positive Airway 
Pressure (BiPAP) and Adaptive Servo Ventilation (ASV). They control 
the airway and keep it open continuously [5]. This study aims at 
determining whether deep learning can detect sleep apnea events from 
any PSG. This will add value to future researches.

Literature review
Many researchers conducted studies on sleep apnea events 

detection differently. Some of them used feature engineering with 
traditional machine learning methods whereas others adapted deep 
learning techniques [6]. Demonstrated Long Short-Term Memory 
(LSTM) with a single ECG signal. The apnea diagnosis was carried 
out on the characteristics derived from the Heart Rate Variability 
(HRV) tests. Long Short-Term Memory (LSTM) was chosen to report 
the time based dependency in HRV data, as one of the critical aids of 
LSTM is the capability to use the prior situation Suggested using 
LSTM to detect the OSA severity by using one feature Instantaneous 
Heart Rate (IHR) alone [7]. Then, by adding an extra feature, which is 
the SpO2. Many physicians applied this technique to their patients 
[8-10]. Reported Convolutional Neural Network (CNN) architecture to 
detect apnea with different trials. First, they used the nasal airway 
signal to equate CNN to Support Vector Machine (SVM). Later, the 
2D spectrogram images of the nasal airflow signal with the raw 1D 
nasal airway signal were used to apply a different strategy. Their 
results adapted using three separate signals; nasal airflow, abdominal 
and thoracic. Urtnasan used a single ECG signal with CNN, LSTM, 
and Gated Recurrent Unit (GRU) techniques. They recorded high 
performance [11,12]. However, they could have proved that by using 
multisignal generalized the study by training the RCNN model on 
MGH data and testing it on SHHS data, though this approach lacked 
accuracy. Li proposed a novel approach for improving accuracy by 
integrating the Hidden Markov Model (HMM) with Deep Neural 
Network (DNN), while adopting the fusion decision algorithm to 
boost overall performance [13]. Nesaragi proposed an LSTM model 
consisting of two stages while neglecting the SpO2 signal [14]. They 
discovered the strong point of using instantaneous frequency and 
spectral entropy features for the detection of arousals. Islam proposed 
another way of detecting sleep apnea using 3D scans while using 
predefined models in transfer learning to beat the limitation of the 
small data set. Their results illustrated the connection between facial 
morphology and OSA. Wang developed an improved LeNet-5 
convolutional neural network with ECG segments for sleep apnea 
detection [15]. The use of transfer learning models has proved useful 
and promised. Mahmud referred to low performance caused by the 
data’s lack. They used EEG signals composed of only seven different 
apnea patients [16].
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Material and Methods
This part illustrated the utilized sleep apnea databases and the used 

deep learning algorithms with the performance metrics of this study.

Sleep apnea databases
Two sleep apnea databases from PhysioNet are used for this study 

[17]. These datasets are "You Snooze You Win Database" was a target 
at the PhysioNet/Computing in cardiology challenge 2018 is provided 
by the Massachusetts Genearl Hospital (MGH) Computational 
Clinical Neurophysiology Laboratory (CCNL) and the Clinical Data 
Animation Center (CDAC) [18]. It includes 1,985 patients for the 
detection of sleep disorders obtained in an MGH sleep laboratory. 
They split the database into 994 folders as a training set and 989 
folders as a test set. Certified sleep technologists at the MGH labeled 
the database according to the existence of arousals. These derived 
arousals were either classified as: Respiratory Effort-Related Arousals 
(RERA), spontaneous arousals, hypoventilation, bruxism, hypopneas, 
apneas (central, obstructive, and mixed), vocalizations, snores, 
periodic leg movements, breathing cheyne stokes or partial airway 
obstructions [19]. The database includes two directories (training and 
test). Each directory contains one sub-folder per patient. Every 
subfolder includes signal, header, and arousal files. Test sets are 
unlabeled. Therefore, we were unable to use them in the testing. 
Records in the database were taken from different persons in both sex 
and age.

This challenge’s database “Apnea-ECG Database (Challenge 
2000)” includes 70 records, divided into two equal parts, 35 records as 
a training set (a01-a20, b01-b05, and c01-c10), and 35 records as a test 
set (x01-x35) [20]. Only the learning sets were annotated. Each record 
includes signals, headers, and other data. Besides, eight records (a01, 
b01, c01, a02, c02, a03, c03, and a04) are followed by four additional 
signals (CHEST, ABD, Nasal Airflow, and SpO2). Three of them were 
used for further testing [21]. Figure 1 shows the approach of sleep 
apnea events detection.

Deep learning techniques
Long Short-Term Memory (LSTM): Hochreiter and 

Schmidhuber initially suggested Long Short-Term Memory (LSTM) 
expression in 1997 [22]. LSTM is a kind of Recurrent Neural Network 
(RNNs), and it became very popular in recent years due to 
its significant performance and in solving the vanishing gradient 
problem. LSTM overcomes that by imposing fixed error flow. It 
clearly learns when to save the information and when to retrieve it 
using gradient descent. LSTM has distinct elements in the 
recurrent hidden layer, called memory blocks. These blocks 
provide memory cells with self-connections to preserve the 
network’s time based state as well as different multiplicative units 
called gates to alter information flow [23].

Each memory block within the interior architecture consists of three 
types of gates, as shown in Figure 2, which are specifically:

Input gate: It dominates the quantities that go into the cell of the 
new value.

Output gate: It considers the input at time t, the prior hidden state, 
and the present value of the cell.

Forget gate: It dominates the ex-cell value quantities that go into 
the present cell value.

Figure 1: Sleep apnea events detection approach.

Figure 2: LSTM memory block, where ft, it, and ot represent the 
forget, input, and output gates, respectively. ct−1 and ct represent the 
memory cell and the content of the new memory cell.

The memory cell in an LSTM network works as a single unit within 
the hidden layer of traditional networks. The formulas are given in the 
following equations:
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Gated Recurrent Unit (GRU): Many similar concepts, but it 
has a much smaller set of parameters so that it can be trained more 
quickly at a sustained hidden layer size. Some researches 
illustrated that the accuracy between LSTM and GRU is comparable 
and even better with the GRU in some cases. GRU includes the same 
internal structure of LSTM, but the memory cell consists of two gates 
rather than three, as shown in Figure 3, which are namely:

Update gate: It also compares how much of the hidden value of the 
previous candidate and how much of the hidden value of the current 
candidate combines to get the new hidden value.

Reset gate: It controls how much of the previous hidden state is 
considered when the new candidate hidden value is created. In other 
words, it can “reset” the hidden value.

Figure 3: GRU memory block, where rt and zt denote the reset and
update gates, and ht and ht denote the activation and the candidate
activation.

Residual Network (ResNet): Residual Network (ResNet) is a 
pretrained deep neural network model used in many tasks like 
prediction and feature extraction, or being fine-tune to a specific case. 
Transfer learning is wisely using the knowledge acquired earlier from 
different missions or issues to mitigate new problems quicker [24]. 
ResNet50 model was used as the pre-trained model for sleep apnea 
events detection by eliminating the predicting layer and substituted it 
with our binary predicting layer. Weights of the first few layers were 
untouched or updated during the training because they save general 
information like curves and edges. Instead, we made the network to 
emphasis on learning specific features in the subsequent layers [25].

Hybrid model: It consists of the ResNet50 architecture with two 
RNN layers. One GRU layer comes after the input layer, and one 
bidirectional LSTM layer comes before the output layer.

Performance assessments: The test set includes samples that have 
never  been  seen  before  by   the   algorithm.   Therefore,  if   the   model 

Results
Some standard python packages were used to access physionet. 

They were also used to display and prepare signals for apnea events 
detection. We used the WFDB API package for remote access instead 
of downloading the training set for data preprocessing [26]. We 
obtained 13 physiological signals in each PSG. Signals were measured 
in microvolts, excluding oxygen saturation (SpO2), which was 
measured as a percentage. We selected three signals (ABD, CHEST, 
and SpO2) and dropped the rest from our estimations. ABD and 
CHEST refer to abdominal and thoracic belts, respectively. An apnea 
events dictionary was created, containing only apnea labels [27]. All 
labels for apnea/stages were pulled from PhysioNet and combined 
with those three signals. They were loaded into a data frame, and then 
the apnea events dictionary that we created was mapped with the same 
data frame. Hence, other unused labels (sleep stages) in that dictionary 
were shown as missing values. Therefore, they were replaced by zero 
[28]. Labels are finally encoded into the one-hot array.

We used google collaborator as a free cloud service based on 
jupyter notebooks for implementing this task. Colab gives 12 GB of 
RAM and increases it up to 25 GB after runtime if required [29]. We 
downloaded the training set of the YSYW database directly, but in 
multistages to avoid RAM crashing. The figures illustrate the CHEST 
signal annotated by an obstructive apnea and the raw targeted signals 
before preprocessing (Figures 4-7).
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Figure 4: CHEST signal of patient tr03-005 annotated by an 
obstructive apnea. Note:      CHEST;      resp_obstructive apnea (right).

performs well in predicting, it can be assumed that it is generalizing 
well. We used the following metrics for assessing the classification 
model:



Databases Models True positive True negative False positive False negative

YSYW LSTM 8507 25473 2715 2514

Apnea-ECG LSTM 1402 1065 209 173

YSYW GRU 9507 26622 1715 1365

Apnea-ECG GRU 1195 1410 155 89

YSYW ResNet50 9067 23906 2980 3247

Apnea-ECG ResNet50 1219 1183 257 190

YSYW Hybrid 10433 27433 1004 329

Apnea-ECG Hybrid 1440 1193 174 42

Table 1: Confusion matrices parameters of our models applied to the YSYW and Apnea-ECG databases. Note: 0: Normal and 1: Apnea.

Figure 6: Scaled signals (after preprocessing).  Note:      CHEST;       
ABD;       SaO2

Several techniques were chosen for comparison according to their 
performances. LSTM and GRU models included four LSTM and GRU 
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layers, respectively. Each has 30, 60, 120, or 200 memory cells 
followed by batch normalization and dropouts to avoid over fitting. 
For classification, we used one fully connected layer at the output 
layer. ResNet50 model included 48 convolution layers, one 
maxpool layer, and one average pool layer. Convolution layers 
related to different kernel size and activation functions. An average 
pool layer followed by a fully connected layer containing 1000 
nodes with softmax function at the end. 

   We extracted 39209 windows from the test set of the YSYW 
database, which represents the last 91 patients of the training set. 
Besides, we also extracted 2849 windows from the test set of the 
Apnea-ECG database, which represent only eight patients who have 
signals of ABD, CHEST, and SpO2. These windows were gathered 
from every patient’s data. Each window was formatted as a 1 × 
6000. The mathematical meaning of this representation is that the 
size of the sampling window, which is 60 seconds, was multiplied 
by the size of the sampling frequency. The amplitude of the signals 
was normalized between 0 and 1. In the training phase, we divided 
the PSG data of each patient into short intervals and shifted these 
intervals for data augmentation. The best validation accuracy started 
to be stable beyond 700 epochs of training [33]. The batch size 
was taken as 32 because a big batch size would lead to poor 
generalization and lower test accuracy. We applied more than one 
deep learning model in order to compare the prediction and 
generalization performance with other methods. According to 
Tables 1 and 2 it can be concluded that the hybrid model gives the best 
results in both databases with an overall accuracy of 97% and 92%. 
GRU model comes next with an overall accuracy of 92% and 91%.

Discussion

Considering the results that we obtained in this study; we could say 
that deep learning has given high performance in this task. The four 
deep learning techniques, including LSTM, GRU, ResNet-50, and the 
hybrid model, were structured and evaluated according to several 
metrics. In practice, we found that models obtained by using only one 
signal from the PSG study cannot be generalized for further use 
because the symptoms are likely to vary based on the physical 
variations in patients. Consequently, it was discovered that using more 
than one signal gives the chance to catch a higher number of abnormal 
events. We  used  the  per  window  method  in  generating 

 Figure 5: Signals (before preprocessing). Note:    CHEST;    ABD;
      SaO2

Signals where SpO2 is below 50% were removed because there is a 
possibility that the connection with devices would be lost [30]. 
The sampling frequency was resampled to 100 Hz because 100 
samples per second are enough to use. The imbalanced problem 
between apnea and normal classes was fixed by under sampling. 
Finally, we reshaped signals into intervals with a fixed length 
[31]. We applied the minimum-maximum method to scale data 
between 0 and 1 for normalization according to equation 15. 
Figure 6 shows the final shape of signals before using them for 
the task of apnea events detection (Table 1) [32].



signals and detection of apnea events. Some researchers used the per-
record  method. They computed the Apnea Hypopnea Index (AHI) for 
some windows in order to obtain a record that is classified as having 
normal, mild, moderate, or severe apnea. Nesaragi also used the 
YSYW database in a different way of us [25]. First, they focused on 
arousal and non-arousal events. EEG signals must be used to detect 
arousal events. Hypopnea and arousal events can only be distinguished 
with EEG signals. Second, the evaluation was not based on precision 
or accuracy. They opted for AUROC instead and obtained low 
performance. They did not discuss the internal architecture of the 
LSTM model [34]. They trained two layers of Quadratic Discriminants 
(QD), which were connected to several LSTMs. Then, the output of the 
trained QD layers was averaged to get the final prediction. The YSYW 
database was not used previously for apnea events detection, which 
reflects our novelty and uniqueness of the results. Also, none of 
previous researches make use of the same group of signals that are 
used. However, most previous researchers preferred to use the Apnea-
ECG database. Another new point of this study, learning parameters of 
trained models is transferred directly instead of training from scratch 
[35]. Finally, the window’s size, which represents the input data, is 
a vital feature for increasing or decreasing the performance of 
the system. A window of size 30 seconds might give better results 
because more than one apnea might occur during one minute. That 
is what Pomprapa emphasized in their paper [36].

Conclusion

   Sleep apnea syndrome is a serious disease with complaints that 
cannot be relieved without treatment. The cost and time of diagnosis 
are exorbitant. Hence, deep learning techniques can be used in this 
field to provide the necessary solutions. The trained model of this study 
can be reused in a sleep lab or home test. The patient can collect the 
same data by using sensors, which can be easily obtained. On the other 
hand, sleep technologists can also compare their diagnosis with the 
predicted diagnosis to improve accuracy. The classification of sleep 
stages is very important for researchers. Sleep stages are obtained by 
analyzing EEG signals that illustrate brain activity, considering its 
importance in diagnosing other diseases like epilepsy. EEG can 
determine whether a person is asleep or awake during the sleep apnea 
test. Collecting labeled patient’s data  is  a  critical  problem  that  faced 

Databases Signals Models Train
Subjects

Test
Subjects

Accuracy (%) Precis (%) Rioencall (%) F1-score (%)

YSYW ABD CHEST
Spo2

LSTM 900 91 87 76 77 76

pnea-ECG ABD CHEST
Spo2

LSTM - 8 87 87 89 88

YSYW ABD CHEST
Spo2

GRU 900 91 92 85 87 86

Apnea-ECG ABD CHEST
Spo2

GRU - 8 91 89 93 91

YSYW ABD CHEST
Spo2

ResNet50 900 91 84 75 75 75

Apnea-ECG ABD CHEST
Spo2

ResNet50 - 8 84 83 87 85

YSYW ABD CHEST
Spo2

Hybrid 900 91 97 91 97 94

Apnea-ECG ABD CHEST
Spo2

Hybrid - 8 92 89 97 93

Table 2: Results of comparison between different deep learning models in sleep apnea events detection.

Figure 7: Evaluation metrics of our models applied to the YSYW 
and Apnea-ECG databases.
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   Figure 8: Comparison between our study’s results and other results 
of relevant studies in accuracy.



researchers in this field because one PSG needs one day to be labeled 
by a sleep technician.
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