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Abstract
CMEIAS (Center for Microbial Ecology Image Analysis System) 
Bioimage Informatics software is designed to strengthen microscopy-
based approaches for understanding microbial ecology at spatial 
scales directly relevant to ecological functions performed by individual 
cells and microcolonies. Copyrighted software components are 
thoroughly documented and provided as free downloads at <cme.
msu.edu/cmeias/>. The software tools already released include 
CMEIAS-Image Tool v. 1.28, CMEIAS Color Segmentation, CMEIAS 
Quadrat Maker and CMEIAS JFrad Fractal Dimension analysis. The 
spatial ecology module of the next CMEIAS upgrade currently being 
developed (version 4.0) is designed to extract data from images 
for analysis of plotless point-patterns, quadrat-lattice patterns, 
geostatistical autocorrelation and fractal geometry of cells within 
biofilms. Examples presented here illustrate how selected CMEIAS 
attributes can be used to analyze the in situ spatial intensity, pattern 
of distribution, and colonization behavior of an indigenous population 
of a rhizobial strain on a sampled image of the rhizoplane landscape 
of a rice plant grown in field soil. The spatial ecology information 
gained can provide useful insights that help to predict the most likely 
performance of the biofertilizer test strain in relation to the growth 
response of the crop under field conditions.
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Introduction
Microbial lifestyles in association with plants are dominated 

by biofilm assemblages colonized on their root surfaces at root/soil 
interfaces, which can significantly impact on plant growth and crop 
productivities. The complex architectures of such microbial biofilms 
are amenable to computer-assisted microscopy and digital image 
analysis. The quantitative data gained by these analyses can bridge with 
modern genotypic technologies to fill gaps of phenotypic information 
on the in situ biofilm ecology of microbial populations and community 
assemblages. We have been developing a comprehensive suite of 
CMEIAS Bioimage informatics software that strengthen quantitative 

microscopy-based approaches for supporting microbial ecology research 
on biofilm development and ecology, thereby providing new and improved 
computing tools for image acquisition, processing and segmentation, 
object analysis and classification, data processing, statistical analysis and 
exploratory data mining. After completion, the copyrighted software 
technologies and their documentations are released as free downloads at 
our project website: <cme.msu.edu/cmeias/>.

Historically, the first release version of CMEIAS featured 
components for analysis of object size, shape, luminosity, a single-
variable classifier, and a sophisticated hierarchical-supervised classifier 
for all major and most minor microbial morphotypes [1]. We next 
developed a CMEIAS Color Segmentation tool for analysis of the 
foreground objects within complex RGB (red green blue) digital images 
where color differentiation really matters most, e.g., ecophysiological 
studies of organisms in situ [2]. For instance, this color segmentation 
tool provided key image processing functions to accurately analyze 
the requirements for bacterial cell-cell communication by biosensor 
reporter strains during their colonization on plant roots in situ, 
indicating that the quorum population requirement was much 
smaller than originally thought (as few as 2 individual cells) and also 
identifying the major importance of spatial positioning of cells within 
gradients of external signal molecules to participate in successful cell-
cell communication [3]. The CMEIAS Color Segmentation tool also 
helps to segment RGB images of bacterial cells specifically detected with 
fluorescent molecular probes (e.g., fluorescence-in situ hybridization or 
immunofluorescence microscopy) when background autofluorescence 
and non-specific staining are present in environmental samples [4]. 
We next released a CMEIAS Quadrat Maker software application 
to optimize the grid dimensions that divide landscape images into 
smaller, constant size contiguous quadrats for high-resolution plot-
based spatial pattern analysis of cells within biofilms [5]. Our most 
recent software release was a CMEIAS JFrad application designed to 
discriminate complex biofilm architectures based on the uniqueness 
of their self-similar fractal geometry [6]. It uniquely features algorithms 
to compute 11 different fractal dimensions along microcolony biofilm 
coastlines, and also can discriminate the spatial patterns of individual 
cells in the biofilm domain. Its protocols are optimally designed for data 
mining the quantitative analytical results in order to provide insights of 
landscape ecology that address the complexity of biofilm architecture 
and colonization behavior. This fractal feature of biofilm architecture is 
attributed to the elevated efficiency of cell positioning in relation to the 
scale-dependent heterogeneous fractal variability in limiting resource 
partitioning, especially when faced with interactive forces of microbial 
coexistence to maximize and compete for their apportionment of nutrient 
resources on a local scale in the surrounding environment [6-11].

Ecosystem function is heavily dependent on spatially structured 
heterogeneity among its members [6-9,11-15]. This ecological 
relationship provides the impetus to include a spatial analysis module 
in the next release prototype of CMEIAS (ver. 4.0) [summary available 
at https://lter.kbs.msu.edu/abstracts/555/. This module is designed 
to explore the microbial biogeography of biofilm assemblages across 
multiple spatial scales, and includes measurement attributes for 
plot-less point pattern, plot-based quadrat-lattice spatial dispersion, 
fractal dimension and geostatistical analyses of their spatial patterns 
of distribution at single-cell and microcolony resolutions [1,6,8,16,17]. 
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The output data can then be further evaluated by various spatial 
statistics to indicate their colonization intensity and reveal insights 
of their colonization behaviors in situ [3-8,16,17], all driven by the 
ecological theory of optimal spatial positioning of organisms in order to 
maximize their efficiency in utilization of nutrient resource allocations 
and participate in cell-cell communication [3,6-15]. Analysis of 
these in situ spatial patterns of microbial distributions within 
immature biofilms (i.e., before growth expansion completely covers 
the supporting substratum) provides data that support statistically 
defendable ecological theories of biogeography, indicating that their 
early colonization behavior involves a spatially explicit process affecting 
their patterns of distribution within their microenvironment [7-15,18]. 
Spatial dependence is considered positive when neighboring organisms 
aggregate due to cooperative interactions that promote their localized 
productive growth, and is considered negative when conflicting/
inhibitory interactions are expressed resulting in their uniform, self-
avoiding colonization behavior [3,7,8,12-15,18,19]. Thus, a major use 
of the CMEIAS spatial ecology module is to test the null hypothesis 
of spatial randomness for the 2-dimensional distribution of organisms 
within the biofilm landscape, which contrasts to various spatially 
dependent and explicit processes from which the positive vs. negative 
type and intensity of their colonization behavior can be deduced. 
When computed from images of immature microbial biofilms, these 
categories of colonization behavior provide statistically defendable 
predictions of their in situ cooperative (aggregately distributed) vs. 
conflicting (uniformly distributed) cell-cell interactions within the 
spatially structured landscape [3-8,12-15,17-19].

Here we describe the use of selected CMEIAS spatial attributes to 
analyze the distribution of indigenous cells of a beneficial rhizobial 
strain in a sampled landscape image of its rhizoplane biofilm on a rice 
plant grown on samples of field soil collected from rice production 
areas in the Egypt Nile delta. The extracted data of its spatial abundance, 
substratum-weighted intensity and pattern of distribution are then 
evaluated by spatial statistics to provide insights on its colonization 
behavior in situ. This information is useful in the assessment of 
biofertilizer performance by selected strains of plant growth-
promoting rhizobacteria in field inoculation studies conducted 
where indigenous populations of the same strain may already be 
present in the field soil. Otherwise, the lack of this information may 
inevitably compromise the final assessment of inoculation benefit 
to the crop growth and yield.

Materials and Methods
Seeds of rice (Oryza sativa) variety Giza 177 were grown for 20 days 

in a sampled clay loamy field soil with the following properties: pH: 
7.3; electrical conductivity range: 1.9 -12.8 dS-1; CaCO3 (%): 1 .4 - 2.9; 
sodium adsorption ratio: 2.9 - 7.2; exchangeable-Na percentage: 2.9 - 
16.0; organic matter (%) 1.8 - 2.0; cation exchange capacity (meq/100 
g): 41.7 - 50.0; available-N (ppm): 485 - 947; available-P (P2O5): 12.3 
- 19.4; available-K (K2O): 38.0 - 73.5; soil texture: loamy, containing 
21.6 - 24.8% clay; 41.2 - 46.1% silt; and 31.0 - 33.7% sand; and water-
saturation: 77.0 - 90.6%. In situ colonization of the rice rhizoplane by 
the indigenous soil population of Rhizobium leguminosarum bv. trifolii 
strain E11was examined by indirect immunofluorescence microscopy 
using a rabbit polyclonal strain-specific antibody [4,17]. This native 
strain was isolated from roots of rice grown in fields that had been used 
for crop rotation with berseem clover (Trifolium alexandrinum) for 
many years [20]. Exploratory field inoculation studies have documented 
its ability to promote the vegetative growth and grain yield of rice under 
lab, greenhouse and various open fields in this region [20-22]. 

The landscape image used for analysis (Figure 1) was acquired 
by epifluorescence microscopy, digitally processed using Adobe 
Photoshop CS3 and CMEIAS Color Segmentation [http://cme.msu.
edu/cmeias/color.shtml] software to include only the individual 
brightly immunofluorescent cells, thresholded to find the foreground 
objects of interest, and then analyzed in situ using CMEIAS software [1-
8,16,17]. The extracted data were statistically analyzed using StatistiXL 
[www.statistixl.com]; PAST [23; folk.uio.no/ohammer/past/], EcoStat 
[exetersoftware.com/cat/Trinity/ecostat.html], GS+ [gammadesign.
com/] and Ecological Methodology [23,24] [www.exetersoftware.com/
cat/ecometh/ecomethodology.html] software.

Results and Discussion 
The first set of image analyses involved measurements of the 

landscape area of the substratum surface, number and size of the 
individual immunofluorescent bacteria, and then their spatial density, 
biovolume, biosurface area, and % substratum coverage [7,8,16]. 
Using these collected data, we computed their substratum-weighted 
colonization intensities in situ within the domain of this sampled 
landscape of the rice rhizoplane (Table 1). These metrics of population 

Spatial Ecology Attribute Value Obtained
Substratum Area of Interest (µm2) 32,796
Cell Count 580
Spatial Density (cells / mm2) 17,685.08
Mean Cell Biovolume (um3, x ± std. dev.) 1.462 ± 0.435
Cumulative Cell Biovolume (µm3) 848.047
Colonization Intensity - Cell Biovolume (µm3 / mm2 

substratum) 25,858.37

Mean Cell Biosurface Area (µm2) 8.79
Cumulative Cell Biosurface Area (µm2) 5,094.89
Colonization Intensity - Cell Biosurface Area (um2 / mm2 
substratum) 155,353.39

% Substratum Coverage 4.27

Table 1: Spatial abundance of immunofluorescent rhizobial cells in the sampled 
landscape image of the rice rhizoplane (Figure 1).

Data are derived from an image analysis of Figure 1 using CMEIAS Bioimage 
Informatics software.

Figure 1: A noise-free, segmented binary image of a sampled landscape 
of the rice rhizoplane containing a population of the targeted indigenous 
rhizobial strain detected by immunofluorescence microscopy using a strain-
specific antibody against R. leguminosarum bv. trifolii E11.

https://folk.uio.no/ohammer/past/
http://www.exetersoftware.com/cat/Trinity/ecostat.html
http://www.gammadesign.com
http://www.gammadesign.com
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abundance to some extent reflect their success at competing for limited 
resources in the substratum microenvironment where they reside [7-
9,25]. Therefore the choice of metrics used to measure their abundance 
among community members can significantly influence how variations 
in that relationship are interpreted [8]. If needed, further subdivision of 
biofilm populations and communities based on CMEIAS object analysis 
and classification of their morphological features can be successfully 
applied when comparing productivity of the entire rhizoplane 
community vs. the biofertilizer preparation containing the strain of 
interest, and certain adaptive responses to environmental stresses 
at single-cell resolution [1,7,8]. For example, bacterial cells increase 
their surface area/biovolume ratio when they size down to enhance 
their nutrient uptake efficiency as a self-induced adaptive response to 
starvation [26], and cell elongation of certain bacterial taxa will increase 
their resistance to protozoan bacteriovory stress [27].

Other useful attributes are included in the CMEIAS spatial ecology 
module. Object analysis attributes reported for each individual cell 
include the georeferenced location of its object centroid (Cartesian 
XY coordinates relative to the X, Y landmark origin of 0,0 located 
in the lower left corner of the image), the shortest linear distance 
between each individual cell and its 1st and 2nd nearest neighbors 
(NND), the cumulative empirical distribution function of the 1st 
nearest neighbor distance for each cell, and a cluster index indicating 
the intensity to which each cell is clustered in close proximity to its 
neighbors [7,8,16,17]. Pertinent cumulative object analysis attributes 
reported collectively for all cells in the same landscape image [7,8,16] 
included the mean / median / std. dev. of the distributions of their 1st 
and 2nd nearest neighbor distances, and attributes reporting various 
substratum-weighted quadrat-density data including their spatial 
density, colonization intensities, cumulative biovolume, cumulative 
biosurface area, and % substratum coverage as indicated in Table 1, 
plus other metrics (e.g., distribution of cell counts in different sized 
quadrats, distance from random point to nearest object) required to test 
the null hypothesis of spatial randomness for patterns of distribution 
within the image. 

Table 2 lists various spatial point-pattern, quadrat-lattice, 
geostatistical and fractal geometry analyses of CMEIAS data extracted 

from the image of immunoreactive cells colonized on this sampled 
landscape of the rice rhizoplane. Student t and Mann-Whitney 
statistical tests indicated that the mean and median values of the 1st 
and 2nd nearest neighbor distances were significantly different (p of 
equal means and medians are 6.64 × 10-32 and 9.54 × 10-60, respectively) 
and not derived from the same distribution. The Holgate aggregation 
index [28] was computed from the distribution of each cell’s 1st and 
2nd nearest neighbor distances. The Hopkins and Skellum Aggregation 
index [29] was computed from distributions of their 1st nearest neighbor 
distance and the distance from an equal number of random points to 
their nearest objects in the image. The arrays of XY object centroid 
coordinates were used to compute the Clark and Evans Aggregation 
Index [30,31], kernel point density [23], linear interpoint alignments 
[23,32] and Ripley K distribution [23,33]. Classifications of spatial 
patterns were differentiated in cumulative plots of each cell’s empirical 
distribution function and its corresponding 1st nearest neighbor 
distance [7,8]. The quadrat indices of dispersion (ratio of variance: 
mean, Morisita and standardized Morisita indices) were computed 
from the frequency distribution of quadrat counts [24,34,35]. The 
cluster index was computed from the 1st nearest neighbor distance 
for each cell [16,17]. The geostatistical metrics of Moran’s Index and 
effective range were computed from the best fit semivariogram model 
of spatial autocorrelation derived from each object’s centroid XY 
coordinates and its associated cluster index as the corresponding “Z 
variate” [7,17,36]. The mathematical methods of dilation, Eucledian 
distance mapping, and box counting were used to compute the fractal-
like patterns of spatial distribution of individual, aggregated cells [6]. 
All of these indices rejected the null hypothesis of randomness in spatial 
distribution of the target bacteria, and provided evidence of strong 
overall spatial aggregation of cells indicating that their colonization 
behavior was dominated by positive/cooperative interactions (Table 2).

Spatial structure representing an aggregated pattern of distribution 
for the targeted strain was further indicated in the plots of kernel 
density, linear interpoint alignments, minimal spanning tree and 
Ripley’s K multi-distance pattern (Figures 2a-2d), all derived from 
analysis of the XY coordinate locations of the target cells within the 
landscape rhizoplane image. The spatial map provided by the kernel 

Spatial Ecology Attribute Value Interpretation
Mean ± Std. Dev. 1st NND (μm) 2.72 ± 1.32 Radial proximity to 1st nearest neighbors
Mean ± Std. Dev. 2nd NND (μm) 3.78 ± 1.65 Radial proximity to 2nd nearest neighbors
Median 1st NND (μm) 2.45 Radial proximity to 1st nearest neighbors
Median 2nd NND (μm) 3.41 Radial proximity to 2nd nearest neighbors
Holgate Aggregation Index 0.582 Aggregated pattern (> 0.5; p random=0.001)
Hopkins & Skellum Aggregation 9.310 Aggregated pattern (> 1.0; p random < 0.001)
Clark & Evans Aggregation Index 7.863 Aggregated pattern (p random=3.76 x 10-15)
Interpoint Line Alignments 142 Multiple, spatially structured interactions
Ripley K Radial Distances 7.5; 37.5; 67.5 Minor uniform, multiple dominant clusters 
Empirical Distribution Function Sigmoid curve Minor uniform, dominant clustered
Quadrat Dispersion Variance : Mean 4.29 Aggregated pattern of dispersion (>1.0)
Quadrat Dispersion Morisita Index 1.140 Aggregated pattern of dispersion (>1.0)
Morisita Standardized Dispersion 0.502 Aggregated pattern of dispersion (>0.0)
Moran's Index for Cluster Index (+) 2.808 Positively autocorrelated clustering
Effective range for Cluster Index (µm) 18.42 Radial distance of autocorrelated clustering influence
Fractal Dimension: Dilation 1.34562 Aggregated fractal pattern 
Fractal Dimension: Eucledian Distance Map 1.30985 Aggregated fractal pattern
Fractal Dimension: Box Counting 1.20190 Aggregated fractal pattern

Table 2: In situ spatial pattern analyses of R. leguminosarum E11 cells on the rice rhizoplane.

Values are computed from data obtained by an image analysis of Figure 1 using CMEIAS Bioimage Informatics software.
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density analysis (Figure 2a) revealed the pseudocolored gradients in 
intensity of cell aggregation and probability of (dis)continuity in their 
local cell density interpolated over the landscape area [7,8,23]. The 
counts of multidirectional, linear point alignments (Table 2) and their 
intersections (Figure 2b) predicted a significant abundance of localized 
epicenters of potential interactions among aggregated microbial cells, 
indicative of their clustered colonization behavior [7,8,23,32]. The 
minimal spanning tree displays the nearest-neighbor network of vertices 
interconnecting all cells into a multi-branched tree with minimal total 
length, and its plot in Figure 2c identified local aggregated patches with 
high vertex densities of short length that further corroborate the same 
location of intense cell-cell interactions predicted by the kernel density 
and linear point alignment plots. Ripley’s 2nd order spatial analysis 
evaluates if the point pattern characteristics change with radial distance 
between cells [23,33], indicating in this case that the vast majority of cells 
displayed aggregated spatial patterns with a multimodal distribution of 
their paired separation distances (Figure 2d, Table 2). 

The geostatistical method of spatial pattern analysis is particularly 
noteworthy, robust and informative. This statistical method measures 

the degree of dependency among observations in a geographic space to 
evaluate the variation in continuity of spatial patterns over that entire 
domain [8,36]. It does so by quantifying the resemblance between 
neighbors as a function of spatial separation distance [8,36]. Data 
are autocorrelated when nearby neighbor pairs are more similar than 
far neighbor pairs, as commonly occur when the cell distribution is 
strongly aggregated [7,8,36,37]. When found, autocorrelation results 
can be mathematically modeled to connect various spatially dependent 
relationships derived from regionalized variable theory [36]. In this 
study, we used geostatistical methods to explore the variation and 
connectivity in the continuously distributed “Z-variate” of the cluster 
index for the targeted population of cells in the sampled landscape 
domain. A positive sum of the Moran’s Index (Table 2) indicated that 
this Z-variate was spatially autocorrelated in the landscape, delivered 
statistically defendable evidence that cell-cell interactions positively 
influence their neighbors’ aggregated colonization behavior, and 
indicated that the cooperative spatial aggregation is a dominant pattern/
behavior that significantly exceeds what would be expected if located 
randomly within the examined geographic space, consistent with the 
other analysis results. 

The geostatistical semivariogram plot (Figure 3) provides 
several features that define the extent to which the Z-variate exhibits 
autocorrelated spatial dependence between pairs of all sampled cells 
[36]. An isotropic exponential model made the best fit of the CMEIAS 
cluster index as the Z-variate for cells in this landscape image, with a 
high coefficient of determination (r2=0.900) and low residual sum of 
squares (2.338 × 10−5). The nugget value (Y intercept of 0.000010 at 
X=0 separation distance) indicated the very low amount of measured 
microstructure that is not spatially dependent over the range of 
separation distances examined. Its small value also indicated that the 
sampling points were sufficient in quantity and sampled at the proper 
spatial scale for this geostatistical analysis [36]. The semivariogram 
model also indicated the important parameter of effective separation 
range (the X-axis intercept at 95% of the asymptote height) that defines 
the maximal separation distance between pairs of sampling points 

Figure 2: Plots of spatial distribution analysis of R. leguminosarum E11 cells colonized on the sampled rhizoplane landscape. A) Interpolated 2-D map of 
Kernel point density. B) Linear interpoint alignments. C) Minimal spanning tree of E11 cells connected to their 1st nearest neighbors. D) Ripley’s K point pattern 
classification. 

Figure 3: Geostatistical semivariogram of the spatial autocorrelation of the 
CMEIAS cluster index for cells of R. leguminosarum bv. trifolii E11 in the 
rhizoplane landscape image. 
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at which the Z variate is still autocorrelated [36]. This extrapolated 
value (Table 2) represents the in situ, predicted maximal distance that 
bacterial cells can be separated from one another and still influence 
their neighbor’s ability to congregate locally into microcolony 
aggregates within the defined spatial domain. This range of influence 
exceeds the maximal distance found between neighboring cells in the 
image (13.14 μm), providing a statistically-defendable appraisal of the 
significant intensity of autocorrelated cell-cell interactions resulting in 
their aggregated colonization behavior. 

Biofilm landscapes commonly have complex architectures that 
exhibit self-similar fractal geometry [6-8,38]. This type of spatial pattern 
often arises from the scale-dependent, heterogeneous fractal variability 
in limiting resource partitioning within their distribution networks, 
and reflects a high efficiency of cell positioning for optimal utilization of 
fractal-like apportionments in distribution of food-cluster resources, 
and the coexistence of multiple species among community members on 
a local scale [6-11]. CMEIAS analysis detected positive fractal geometry 
in the spatial pattern of aggregated distribution among the cells in the 
landscape image (Table 2), suggesting that their colonization behavior 
has resulted in a spatial positioning designed to exploit the fractal-
like allocation and acquisition of clustered nutrient resources on the 
rhizoplane [6-11]. 

In summary, CMEIAS-based applications of bioimage informatics 
can fill major gaps in studies of microbial ecology by providing user-
friendly computing tools that extract ecologically relevant, quantitative 
phenotypic information from digital images of microbes at multiple 
spatial scales, including their spatial ecology within biofilms. In 
this study, we examined the spatial distribution of a rhizobial 
biofertilizer strain on a sampled rhizoplane surface of rice grown in 
a field soil, representing an association that can ultimately lead to 
significant growth promotion of the crop plant. The results of this 
spatial ecology analysis concur with other studies that examined the 
patterns of spatial distribution and biofilm colonization behavior 
of other microbes on other substrata [3-8,16,17], indicating 
that microbial patterns of spatial distribution within immature 
biofilms in various ecosystems are highly structured rather than 
deemed as randomly distributed, and the data provide abundant 
statistical evidence indicating that the colonization behavior of 
the test strain in the sampled rhizoplane landscape is dominated 
in situ by positive, cooperative types of regionalized cell-cell 
interactions with their microbial neighbors. We are exploring 
how this bioimage informatics approach to analyze colonization 
intensities and behaviors of superior inoculant strains can enhance 
the biofertilization technologies as a successful/promising tool for 
predicting, before the start of field tillage and the planned farming 
processes, the potential for success or failure of the biofertilization 
practice in promoting plant growth and crop yield under field 
conditions, especially when the same inoculant strain is already 
indigenous in the field soil used for cultivation.
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