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Abstract
The objective of this study is to explore the spatio-temporal nature 
of groundwater monitoring data using space-time (ST) geostatistics 
in order to predict water table depths at Bauru Aquifer System (BAS) 
in a conservation area at São Paulo State, Brazil. The information 
about the groundwater oscillation process in space and time can 
be measured in terms of spatial and temporal correlation through 
the ST variogram. The targets was predict water table depths in a 
missing date inside the monitoring period and propose a validation 
of these predictions based on predicted and observed values 
distribution curves for that specific date. Before modelling the ST 
empirical variogram, separability between space and time structures 
was checked. Then, the ST kriging predictions for March 31, 2016 
were compared with independent observed dataset. ST kriging was 
a robust interpolator, turning possible a reasonable reconstructions 
of a hypothetical missing scenario inside the monitoring period in 
the BAS study area. The results showed a strong dependence of 
the temporal mean in the predictions.
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Introduction
One of the main interesting features of a geospatial network 

collecting water table depths monitoring data is its capacity 
to investigate not only the spatial distribution of the aquifer 
characteristics but also the temporal dynamics and variations. But 
modelling the spatio-temporal variability is tricky first of all because 
distances in space and time are not comparable. The obvious link 
between space and time is many times ignored by researchers due to 
its difficulty to join variabilities that happen in different dimensions in 
one single model. For Gneiting and Guttorp [1], time is intrinsically 
distinct from space, while time moves in only direction (forward), 
space do not present a preferred direction. Moreover, it is difficult 
(if not impossible) to compare the spatial and temporal intervals, 
which happen in unconnected units. In general, monitoring data have 

both indexations with space varying in meters, kilometres (a measure 
of distance) and time varying in days, months, years, centuries (a 
measure of existence). Furthermore Cressie and Wikle [2], explain 
that the modelling of space–time (ST) distributions, which come from 
the progress of dynamic mechanisms in space and time, is critical in 
many scientific and engineering fields. 

Like Kyriakidis and Journel [3] comment, ST data were first 
analysed through models that were developed originally for temporal 
or spatial distributions. The joint space–time correlation is nowadays 
fully modelled for prediction/forecasting purposes through the use 
of various ST variogram models available in the literature [4-9]. 
Although the selection of an appropriate class of models could be 
based on its geometric features and theoretical properties [9,10], in 
practice, the generalized product–sum model by De Iaco et al. [11] is 
largely used in different areas, ranging from environmental sciences 
to medicine and from ecology to hydrology [12-17]. 

As an extension of traditional geostatistics, ST geostatistics has all 
its the advantages of making optimal estimations with the available 
dataset, computing the accuracy of the estimations/predictions, 
considering the covariate information and offering adaptability in 
modelling [18]. The computation is similar, however calculation can 
take longer due to the usually large conditioning datasets, making 
estimation grid also large, especially, with the addition of an extra 
dimension. Moreover, Gräler et al. [19] discuss that it is possible to 
estimate values pondering the spatial and temporal neighbouring 
observations from spatial and temporal correlations. ST interpolation 
can potentially compute more accurate estimations/predictions 
than purely spatial interpolation due to the consideration of the 
observations taken at other times. 

As Heuvelink et al. [20] stated, the widespread collection of 
valid space-time covariance functions structures developed in the 
last decades followed by practical side publications and more user-
friendly software solutions increased the use of ST geostatistics. 
Many applications of ST geostatistics are mentioned in the literature, 
varying from field like agriculture [21], air quality [22,23], climatology 
[24,25], soil science [26,27], health [28], ecology [29], among others. 
Especially on hydrogeology, it is worth recalling early works like 
Rouhani and Hall [30] which describe the application of space-time 
kriging of groundwater data and Rouhani and Myers [31] which state 
some problems when using ST kriging for some typical configurations 
of hydrological data. In recent studies, Júnez-Ferreira and Herrera 
[32] used ST kriging to water level estimation of the Queretaro-
Obrajuelo aquifer  in Mexico, while Varouchakis and Hristopulos 
[33] performed a comparison between spatio-temporal variogram 
functions on scarce information of groundwater level oscillation 
in the isle of Creta, Greece. As Varouchakis and Hristopulos [33] 
highlighted, there are some difficulties when applying these methods 
for groundwater datasets because hydrogeological data based on in-
situ metering are frequently sparse in space and dense in time, what 
can introduce a significantly different levels of reliability in space 
and time. The validation of ST kriging methods is not discussed in 
practical terms and there is a lack of studies comparing predictions 
and forecasts with future observations. 

The objective of this research is to verify the applicability of ST 
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stationary spatio-temporal random field Z has a separable covariance 
if there exist purely spatial Cs(h) and purely temporal CT(u) covariance 
functions, such that: 

C(h,u)=Cs(h)CT(u)                          (3)

Otherwise, the ST covariance function is non-separable. Note 
that the separability condition can be written equivalently as 
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Hence, when the equality in (3) is true, one can see that the 
space-time covariance function can be detached into the product of a 
purely spatial covariance and a purely temporal covariance. Another 
characteristic of spatio-temporal covariance function is full symmetry: 

C(h,u) = C(-h,u) = C(h,-u) = C(-h,-u)                    (4)

Note that a separable covariance must be fully symmetric, but full 
symmetry does not imply separability [46-48].

Study Area and Dataset
Santa barbara ecological station

This paper presents a spatio-temporal geostatistical analysis of 
data collected from Santa Barbara Ecological Station (EEcSB), a “strict 
nature reserves” area, or category 1a under the International Union 
for the Conservation of Nature and Natural Resources (IUCN). This 
entails severely restricted the human use and visitation of the area 
in order to protect the biodiversity and conservations values of the 
area [49]. The EEcSB was established in 1984 and is located in the 
municipality of Águas de Santa Bárbara, coordinates 22°48’59” S and 
49°14’12” W (Figure 1). 

This reserve borders the city of Águas de Santa Bárbara to the 
north and covers 2,715 ha of ecologically important land [50]. It is 
located in the Médio Paranapanema hydrographic region, in the 
Paranapanema watershed. The local relief is composed primarily of 
wide and short hills, with altimetry around 600 and 680 m. The main 
soil types present in the EEcSB are Red Latosols (LV56) and eutrophic 
and dystrophic Red-Yellow and Red Argisols (PVA10) with sandy/
medium texture and eutrophieric Nitosols (NV1) with clay texture 
[51].

According to Köeppen classification, the characteristic climate of 
the region is tropical subhumid (Cwa-warm climate with dry winter). 
The average temperature is around 18°C and ranging from 16°C to 
23°C in the monthly mean [52]. The annual precipitations are around 
1,000 and 2,086 mm and can reach 30 mm monthly in winter [53].

Local hydrogeology and monitoring water table depths net-
work

EEcSB is situated on the Paraná Basin, an intracratonic 
sedimentary basin that evolved on the South American Platform, 
composed of sedimentary, volcanic and basaltic rocks and drained 
by the Parana River, its major river. The top layer is composed by 
Cretaceous sandstones known as the Bauru group [54] with an 
average thickness of 100 m. 

The Bauru Aquifer System (BAS) overlays the Serra Geral 
Formation, which consists of the impermeable substrate formed 
overtop of the Guarani Aquifer System (GAS). Groundwater recharge 
in this area occurs by direct infiltration as a result of precipitation in 
the horizontal extension of the aquifer. In some locations fractures in 

geostatistics to predict water table depths from hydrogeological 
monitoring data in a conservation area in the Brazilian Cerrado. 
Observed levels are compared with predicted levels for a time 
instant inside the monitoring period in order to evaluate ST kriging 
performance. It is proposed a framework to analyse ST kriging water 
table depths predictions based on its distribution functions compared 
with observed values and on errors measurements.

Space-time Geostatistics
Two major conceptual viewpoints for modelling spatio-

temporal distributions via spatial statistics tools extended to 
include the additional time dimension were defined by Kyriakidis 
and Journel [3]. Firstly, given a spatio-temporal random field 

( ){ }, , ,dZ s t s D R t T N∈ ⊆ ∈ ⊆ , where S is the spatial domain and T is 
the time interval, with finite first and second order moments, it is 
assumed that Z is composed by a trend component, that represent 
the global variability of the spatio-temporal process, and its higher 
frequency fluctuations as the stationary residuals: 

Z(s,t) = m(s,t) + ε(s,t)                 (1)

where m(s,t) is a deterministic trend, which is assumed constant 
in space and time, or it is function of known explanatory variables 
(covariates) and ε (s,t) is a zero-mean stochastic residual. 

In the case of water table depths, it may be reasonable to use 
porosity and the time of the year as explanatory variables, to support 
that groundwater has a seasonal oscillation and tends to fluctuate 
more or less according to water infiltration. The zero-mean stochastic 
residual ε is often assumed to be multivariate normally distributed; 
hence a covariance function  can describe it. This function computes 
the covariance between ε (s,t) and ε (s0,t0) for any pair of points (s,t) 
and (s0,t0) in the spatio-temporal domain. Assuming the second-order 
stationarity, the function depends entirely on the spatial separation lag 
(h=s-s0) and the temporal separation lag (u=t-t0) between the points: 

( ) ( )( ) ( ) ( )0 0 0 0, , , , ,Cov s t s t C s s t t C h uε ε = − − =              (2)

The ST trend function m(s,t)  can be straightforwardly decomposed 
as the sum of its components (purely spatial and purely temporal) 
trends [1]. When h represents the Euclidean distance ( )0 ,h s s= −
the spatial isotropy assumption is considered [18]. 

Spatio-temporal Covariance Models
The reliability of geostatistical estimation and/or simulation 

results depends on the adequacy of the selected ST correlation model 
for the variable under study [10]. In practice, it is usual to choose a 
correlation model from a collection of valid known models and verify 
whether it fits. 

In the literature there are various spatio-temporal covariance 
models, such as the separable/linear model [30,34,35], the product 
model [36], the product-sum model [37], the metric model [38,39], 
the Cressie-Huang model [4], the Gneiting models [6], the integrated 
product-sum model [5,12], and others non-separable spatio-temporal 
covariance models [8,40-43]. For further information about spatio-
temporal geostatistics models we recommend [1,2,9,24,44,45].

When selecting an appropriated model it is important to have in 
mind the main features of a covariance function/variogram; among 
these characteristics, it is worth mentioning the separability/non-
separability between space and time. 

According to the definition in De Iaco et al. [45] a second order 



Citation: Manzione RL, Takafuji EHDM, De Iaco S, Cappello C, Da Rocha MM (2019) Spatio-temporal Kriging to Predict Water Table Depths from Monitoring 
Data in a Conservation Area at São Paulo State, Brazil. Geoinfor Geostat: An Overview 7:1.

• Page 3 of 10 •Volume 7 • Issue 1 • 1000205

doi: 10.4172/2327-4581.1000205

the Serra Geral Formation can cause leakage from BAS into the GAS 
[55]. At EEcSB, the geology is composed, basically, by sandstones 
of Bauru Group (Adamantina and Marilia Formations) and basalts 
(extrusive igneous rocks) from Serra Geral Formation of São Bento 
Group. BAS is a free aquifer, denoted as high risk to contamination 
due to land use and soil management, and is extensively utilized in 
public drinking water distribution systems [55]. Uncontrolled use 
of this reservoir, without rules or regulation, could change the status 
of the BAS from strategic drinking water reserve to a depleted water 
body, which could become a source of conflict in the future.

Water table depths were observed in the EEcSB at 55 monitored 
wells from September 5, 2014, until December 13, 2017. The wells 
have depth, ranging from 2.94 to 7.68 m. Figure 2 shows the layout of 
the wells in the study area. 

Water Table Depths ST Modelling
ST variogram estimation and separability checking 

In order to estimate the spatio-temporal variability of water table 
depths in the EEcSB, we selected a period covering three hydrological 
years (from September 05 2014 to September 04 2017) of monitoring 
series at 55 wells. The observed values were modelled and resampled 
for a semi-monthly frequency using a time series model implemented 
in the Menyanthes software [56].

First, the time series collected in the geospatial monitoring network 
were transformed into a spatio-temporal full dataframe (STFDF). 

Then, a ST variogram is estimated. The criteria for experimental 
variogram construction for both space and time dimensions follow 
the proposition of Journel and Huijbregts [57] that recommend using 
one half of the sample field (L=5,000 m) length as a limit of reliability 
for the estimator (cutoff h <L/2). 

Second, we check for separability between space and time for a 
proper model selection. Variogram properties testing like symmetry 
and separability is describeb at Li et al. [46] and Cappello et al. [48]. 
Considering the observation taken at the same spatial points over a 
period of time, the null hypotheses of full symmetry and separability 
of a space-time, given in terms of covariance function, are presented as:

H0:AF(G)=0                      (5)

where A is a contrast matrix of row rank q and f=(f1,…..fr)
T are real-

valued functions that are differentiable at G. ( ) ( ){ }, : ,C t t= ∈ ΛG s s
the vector of covariances at the specified lags in Λ. If ( )ˆ ,nC ts , with 
( ),t ∈ Λs , denote the covariance estimators based on random 
variables in the sequence of the index sets, n nD S T= × , with a fixed 
space dS R⊂ and regularly spaced times Tn={1,…..,n}, and let 

( ) ( ){ }ˆ , : , ,n nG C t t d= ∈ Λs s  is the estimator G computed over Dn. In 
case of symmetry (f(G)=G), the null hypothesis is frequently written 
as. H0:AG=0As a consequence, the suggested statistical analysis for 
verifying symmetry and separability are respectively:

( )1 1

1
ˆ ˆT
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−   =    ∑A A                       (6)
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Figure 1: Bauru Aquifer System (BAS) domain at São Paulo State, Brazil, and localization of the study area.
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and, under, H0 they converge in distribution to a chi-square with 
q degrees of freedom. The generic element of the matrix B is, 

, 1,...., , 1,... ,i
ij

i

f i m j r
G

δ
δ

= = =B with fj and Gi the j-th component of f 

and the i-th component of G, respectively. By simplicity, it is assumed 
that the expectation of Z is known and equal to zero. Nevertheless, 
if this assumption is disregarded, it is enough to denote with with 

*( , )nC s t  and *ˆ
nG the mean-corrected estimators of C(s,t) and G, since 

*
nG  and Gn have the same asymptotic properties. More details can be 

found in Li et al. [46] and Cappello et al. [48].

Third, ST variability is modelled using a model that suits to 
the tested hypothesis of separability. Note that separability test can 
be performed using the package covatest [58] and ST variogram 
calculations can be performed using the packages gstat [59] and 
spacetime [60], all from R software [61].

Water Table Depths ST Prediction
ST kriging

Usually, before performing the ST kriging, the global trend should 
be modelled, and the stochastic residual covariance function should 
be computed. Then, the spatio-temporal kriging can be calculated as 
traditional ordinary kriging functions. If the trend is a linear function 
of covariates, then Kriging with External Drift (KED) is the most 
appropriate approach [62]. 

In the following the ordinary kriging algorithm (constant and 
unknown deterministic component) was used to interpolate an 
instant within the time series whose observations were not used to 
construct the variogram. The date of March 31, 2016 was selected 
as the target and later field observations of that date were used to 
validate the generated map. ST kriging was also performed using the 
R packages gstat and spacetime.

ST model validation

To evaluate the ST kriging performance on predict water table 
depths, after variogram modelling and ST interpolation we estimated 
distribution functions and cumulative distribution functions for 
observed and predicted water table depths at March 31, 2016. The 
distribution functions were estimated using the values observed 
in the monitoring wells specifically in this date and, for the same 
locations, the values estimated using ST kriging. The Kolmogorov–
Smirnov test (KS test) was used for comparing two-by-two samples, 
with the null hypothesis that the samples are drawn from the same 
distribution, independently of the interpolation method [63,64]. 

Results and Discussion
Separability test and ST variogram modelling

The ST variogram from September 05, 2014 to September 04, 2017 
was calculated using 38 time steps (18 months) once it was considered 
half of the temporal field. The parameters of the ST variogram are 
presented in Table 1 and the resulting experimental ST variogram 
presented in Figure 3.

Watersheds
Monitoring wells
Drainages
Santa Barbara State Forrest

Santa Barbara Ecological Station

1                    0                    1                    2                    3 km

Datum: WGS84
EPSG: 4326

FAPESP 2016/09737-4

Legend

Figure 2: Water table monitoring network installed at the main watersheds of Santa Barbara ecological station and state forrest.
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Then, the separability assumption was verified by choosing 
couples of spatial points at the shortest distance h and fixing the 
first temporal lag, where the correlation is strong. The null hypothesis 
of separability is not rejected (TS=6.37 and p-value=0.496), 
consequently, it is reasonable to fit a separable model to the empirical 
variogram surface and then use this model to perform ST modelling 
and estimation.

Note that the separable model in terms of variogram can be 
written as:

( ) ( ) ( ) ( ) ( ), . .sep s s t t s tu sill sill u k uγ γ γ γ γ= + −h h h                (8)

where sγ  and tγ  are standardised spatial and temporal variograms 
with separate nugget effects and (joint) sill of 1 and k=min(sills,sillt). 
This function is also fully symmetric as explained by Gneiting [6], 
Stein [42] and De Iaco et al. [45]. 

The fitted separable product model is such that the spherical 
model (with range equal to 1,500 meters and sill 0.75) is used for the 
spatial component and the exponential model (with range equal to 30 
days and sill 1.55) is applied for the temporal one. The results of the 
ST variogram adjustment are illustrated in Figure 4. 

As shown in Figures 3 and 4, in the temporal dimension the 
variance increases abruptly after a few moments while in the spatial 
dimension the variation is smoother. In the temporal dimension, the 
variance is greater than in the spatial dimension, with modelled sill 
values of 1.55 and 0.75, respectively. However, the spatial range is 

3.0

2.5

2.0

1.5

1.0

0.5

0.0

500
400

300
200

100
0 0

500
1000

1500
2000

distance

ga
m

m
a

time lag (days)

2.0

1.5

1.0

0.5

0.0

Figure 3: Experimental ST variogram for water table depths monitored from September 05, 2014 to September 04, 2017 at EEcSB.
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Figure 4: ST plot (left) and adjusted product model (right) for water table depths monitored from September 05, 2014 to September 04, 2017 at EEcSB.

ST variogram Cutoff Width
Space (meters) 2,400.00 230.00
Time (days) 38.00 15.00

Table 1: Parameters of the experimental ST variogram for water table depths 
calculated for the period from September 05, 2014 to September 04, 2017 at 
EEcSB.
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greater than the temporal range, showing a greater continuity of the 
water table oscillation process in the space from the data variation 
whose variance increases gradually to approximately 1,500 m and 
stabilizing from this distance. Whereas the variance in the time rises 
abruptly already in the initial times of the process and stabilizes already 
starting from 30 days. These values   denote a water table oscillation 
process gradual and continuous in space and highly variable in time 
due to its seasonality and the monitoring network of shallow water 
table levels. Besides that, the spatial and temporal ranges cannot be 
compared numerically by different dimensions and units (space in 
meters and time in days). As can be seen in the ST plot, after around 
150 days and 1,000 m the variation is completely random.

In general, the EEcSB groundwater system has a short memory 
and rapid response. In other words, it is influenced by nearby time 
instants whose influence tends to be lost quickly. Noticeable fluctuations 
in the groundwater level can be observed in the riparian zone, in space 
and time, evidencing a clear river influence [64]. A precipitation event, 
for example, would exert a rapid and strong reaction in the water table, 
but would not be sustained for long, due to local drainage and runoff 
conditions or even the incidence of new precipitation events that would 
exert a new and maybe even stronger influence in the levels than the 
previous event. In regions with widespread shallow water tables, the need 
to understand the drivers of its fluctuating levels becomes critical for 
agricultural planning and hydrological management [65].

Water table depths prediction

Thus, once determined water table depths response characteristics 
in space and time, the product model fitted to the data was used to 
predict water table depth at March 31, 2016, resulting in the map 
showed in Figure 5. The interpolated values presented a smooth and 
gradual variation in the study area, representing the same variations 
observed in the field with values denoting more superficial levels in 

the head of the Bugre, Guarantã and Passarinho watersheds. Next to 
the water dividers the values found were deeper, but still considered 
superficial (> -2.0 m). 

For Appels et al. [66], groundwater dynamics can be related 
with microtopographical and mesotopographical features, those that 
can be characterized deterministically, e.g., resulting from tillage or 
vegetation structure, and erratic ones such as macrofauna burrows. 
These features can definitely influence patterns of ponding and surface 
runoff in areas with small topographic gradients [67]. In the plains of 
Argentine Pampas, Mercau et al. [65] verified that at the inter-annual 
scale the water table oscillation were dominated by the variability of 
the climate system while the farming crop had impact on the growing 
season and subtle influence on the year to year oscillation. These 
statements reinforce the need for prediction methods capable to 
estimate spatial variation, accounting also for temporal variations in 
area where seasonality is strong and evident.

In areas where no well information was available, lower values 
were assigned (red map areas). These values are close to the average 
of the set of data used for map validation, presented in Table 2. These 
statistics were calculated using 55 observed and interpolated values.

1                    0                    1                    2                    3 km

Datum: WGS84
EPSG: 4326

FAPESP 2016/09737-4

EEcSB watersheds
Drainages
Monitoring wells

Water levels (March 31, 2016)
-1.55 m
-1.40 m
-1.25 m
-1.10 m
-0.95 m

Legend

Figure 5: Water table depths predicted for March 31, 2016 at EEcSB using ST kriging interpolation.

Values All data Obs Stk
Minimum -6.21 -1.95 -1.46
1st Quantile -1.78 -1.32 -1.33
Median -1.35 -0.89 -1.24
Mean -1.08 -0.63 -1.23
3rd Quantile -0.44 -0.45 -1.14
Maximum 0.32 -0.35 -1.03
*ALL DATA=Complete dataset; OBS=Observed values on March 31, 2016; 
STK=Interpolated values using ST kriging

Table 2: Descriptive statistics of the complete dataset, observed values at March 
31, 2016 and predicted water table depths using ST kriging.
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The mean, median, quantiles, minimum and maximum values, 
standard deviation, variance, skewness and kurtosis were not similar 
when comparing observed values and ST kriging predictions. 
Figure 6 presents the density distribution functions of observed and 
predicted values. The interpolated values smooth the distribution, 
with minimum and maximum values smaller than observed values. 
Also, the skewness and kurtosis denote slightly differences in the 
distributions. ST kriging predictions followed the premises of kriging 
algorithm showing normal distributed values with minimum variance 
and honouring the mean of the population [57,62]. Since there was 
no spatial mean for the predicted date, the ST kriging algorithm 
based its estimations in the global mean of the dataset, creating a 
mean scenario based on all observed time steps instead of condition 
its predictions to previous and further moments of the predicted date 
March 31, 2016.

When running ST kriging, even with further points in space 

and time when we are making a prediction of a time frame between 
observations, this prediction is too attached at the mean of the whole 
dataset, once the variations between observations can be large. In 
the case of the variogram showing a pure (or almost) nugget effect 
in time, the results of each point will tend to average the values of 
each time series used in the search neighbourhood. Therefore, the 
density function resulting from the spatio-temporal method has a 
confinement around the mean. This is the inverse of the problem that 
was presented by Rouhani and Myers [31], where the authors report 
the fact of a temporal sampling larger than the spatial could cause 
deviations in the estimates. In this case, the estimates were based 
largely on the temporal mean of the process, although the network of 
55 water table observation wells was considered a large dataset for a 
small area. Figure 7 shows cumulative distribution functions (CDF) 
calculated for observed and predicted values. The median values 
(dashed vertical lines) were far from each other, and the ST kriging 
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CDF (green line) presented much less variability than the observed 
water table depths CDF (red line). ST kriging CDF presents a much 
narrow interval and a displacement of the median to the left. 

Table 3 present error measures and the result of Kolmogorov 
Smirnov test for both distributions. These diagnostics denote the 
observed and predicted water table depths at March 31, 2016 do not 
belong to the same distribution. For 55 values, KS test D statistics 
and associated p-value rejects the null hypothesis that the sample of 
predicted values is drawn from the reference distribution of observed 
water table depths. However, mean errors (ME), mean absolute 
errors (MAE) and root mean squared errors (RMSE) are considered 
small for this kind of mapping, but large if considered the amplitude 
of variance contained in the data. The errors are close to the standard 
deviation values of the observed and predicted water table depths. 

When the aim of a spatio-temporal exercise is to predict a missing 
frame inside a monitoring period, like in this study, it is important 
to have in mind the final use of the resulting map. Errors smaller 
than 0.6 m are manageable errors for many agricultural groundwater 
purposes like pumping or drainage, but critical for others like irrigation 
and phreatic control. Authors like Wang et al. [64] consider shallow 
groundwater as an important source of water, which necessitates a 
deeper understanding of its complex spatial and temporal dynamics 
driven by hydrological processes, especially in arid environments. 
Tillage, crop yields and water consumption at lowlands characterized by 
shallow ground-water levels are affected by the groundwater levels, which 
therefore influence the potential to use the land for agriculture [68].

When the study objective is to forecast (predict the future 
from the past), Heuvelin et al. [18] recommended that the model 
should incorporate the driving forces and it can be done with a 
dynamic state-space approach (i.e. Kalman filter). One should 
notice that kriging methods were originally created to interpolate, 
thus it cannot be reliable to extrapolate beyond the ST domain of 
the conditioning dataset. As Cressie and Huang [4] comment, the 
separable ST covariance is frequently assumed due to its simplicity 
(reduced number of parameters that need to be estimated and ease 
estimation) and implies that the spatial structure is the same at all 
time points and the temporal structure is the same at all locations. 
Besides that, Montero et al. [44] argue that the separable models 
have been the most widely used in geostatistical application, even in 
situations when this hypothesis was not justified by the very nature 
of the process under analysis due to the product of purely spatial 
and purely temporal covariances permits more efficient inferences in 
terms of computing. However, as De Iaco [10] explains, separability is 
restrictive and often requires unrealistic assumptions because it does 
not model ST interaction. ST kriging is also promising for persistent 
phenomena, with long memory or even directional spatial continuity, 
like groundwater contamination and transport as several studies 
published in the field of atmospheric pollution suggest [19,22-25].

Conclusion
The application of ST geostatistical methods to water table 

monitoring data made it possible to explore the relationships existing 
in space during the period studied, relating the spatial and temporal 
variations by means of covariance functions. From the establishment 
of these data based functions was verified that there is a separable 
spatio-temporal behaviour in water table depths oscillation processes 
in the Bauru Aquifer System at EEcSB. This spatio-temporal behaviour 
has been well captured by the product ST variogram model, denoting 
a groundwater system with short memory and fast response in time 
and continuous variation in space. Also, It has been possible to 
predict water table depths for a missing frame inside the monitoring 
period using the modelled separable product covariance function. ST 
kriging predictions have been too attached to the global mean of the 
dataset, however the estimates did not reproduce well the observed 
values distribution for March 31, 2016. Errors from observed and 
predicted water table depths have been considered small. For shallow 
groundwater systems with short memory, influenced by seasonality 
and with fast response to localized meteorological events it is 
important to check significance of ST kriging predictions to avoid 
misinterpretations and further water management complications.
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