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To determine ω them, we will perform such a coordinate 
transformation that would exclude from the right the equations 
describing the motion of the bodies during t [1-4]:
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Let P1(1,1), P2(-1,1), P3(-1,-1), P4(1,-1), P5(α,α), P6(-α,-α), 
f=1, m0=1, m5=m6 then, applying the symbolic calculus system 
Mathematica (SCS Mathematica), we obtain:

m1=m3, m2=m4=f1(α,m1), m5=m6=f1(α,m1),ω2= f3(α,m1)                    (4)

The following table shows the tolerable intervals of α it depending 
on the values   of m1 its calculated approximately using the graphical 
tools of SSC Mathematics (Table 1):
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To determine them, the graphical possibilities of SSC Mathematics 
were used:To determine them, the graphical possibilities of SCS 
Mathematica were used:

We will note, for simplicity, the coordinates of any point Ni, Si 
through , , 0i i ix y z∗ ∗ ∗ =  and through the vector

Introduction
It is investigated  the stability problem in the Liapunov sense of 

a new class of exact solutions of the bounded and flat Newtonian 
problem of several bodies with incompleted symmetry. Whether in 
the non-coordinate space P0xyz there is the movement of eight bodies 
P0, P1, P2, P3, P4, P5, P6, P, each having the masses m0, m1, m2, m3, m4, 
m5, m6, µ, which attract each other in accordance with the law of 
the universal attraction. We will study the planar dynamic pattern 
formed by a square in the vertices of which the points P1, P2, P3, P4 
are located, the other two points P5, P6, having the masses m5= m6 , are 
on the diagonal P1P3 of the square at the distances equal to the point 
P0, in around which this configuration rotates at a constant speed ω 
determined precisely by the model parameters. The motion of the 
infinitely small mass µ=0 (the so-called passive gravitational body) 
will be studied in the gravitational field formed by the seven bodies 
P0, P1, P2, P3, P4, P5, P6 that attract each other and attract the body P.

The Liapunov sense of a new class of exact solutions of the 
restricted and flat Newtonian problem of several bodies with 
incomplete symmetry is investigated. In the studied model m7=µ=0. 
For simplicity it will be considered P(x7,y7,z7)≡ P(x,y,z=0) further and 
then the equations of the point P(x,y,z=0) movement have the form 
(Figure 1):
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Figure 1: Studied model of incomplete symmetry.

m1 Admissible intervals for α
0.0001 ---------------
0.001 ---------------
0.01 (0.8582; 0.85857)
0.1 (0.715; 0.718)
1 (0.48965; 0.5053)
10 (0.291; 0.320)
100 (0.149; 0.2871)
1000 (0.050; 0.2838)

Table 1: According to the definition of the stationary solutions of differential 
equations, the equilibrium positions (if they exist) are the solutions of the 
functional equation system.



Citation: Cebotaru E (2018) Stability of the Stationary Solutions in the Bounded Problem of Eight Bodies with Incomplete Symmetry. Res Rep Math 2:2

• Page 2 of 4 •Volume 2 • Issue 2 • 1000113

x=(u-u*, v-v*, w-w*, x-x*, y-y*, z-z*)                                      (6)

The six-dimensional phase space {x} is local, therefore each of 
the Ni and Si equilibrium points (taken separately) represents the 
point x=0 of this space. By performing the linearization procedure in 
the vicinity of the phase point with SCS Mathematica we obtain the 
following system of linear differential equations (Table 2):

,dx Ax
dt

=                              (7)

Where the matrix A of the size 6x6 has the form:
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
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For each equilibrium position the values   of the elements a, b, c, 
d of the matrix A will be different. The characteristic equation from 
which the matrix A’s own values   are determined is:

det (A-λE)=(λ2-d) (λ4+(4ω2-a-c) λ2+ac-b2)=0                (9)

In order for each of the researched equilibrium positions to be 
stable, it is necessary that all solutions of the equation to be imaginary. 
As d<0 we obtain that two matrix values   A will always be imaginary. 
We will note them in the future through λ5, λ6 Table 3.

Theorem 1
There are values   of the parameters m1 and α for which the 

bisectoral stationary points Si of the boundary problem of eight 
bodies are stable in the first approximation.

Normalization of the Hamiltonian’s square part

 The study of the stability in the Liapunov sense of the stationary 
points in the fourth order Hamiltonian systems can be made only 
on the basis of Arnolid-Mozer theorem. In order to verify that the 
conditions of this theorem are met in the previously studied model, 
we will first attempt to bring Birkg of into normal form in a series 
of powers in the vicinity of any stationary point, stable in the first 
aroximation. In the subsequent calculations and transformations, the 
stable stationary point was used in the first approximation S1 with the 
coordinates [5-7].

x*=1.4116760833927924, y*=-0.12379179384743404,                 (10)

obtained for m1=0.01, α=0.8584, We build, in a rather small 
neighborhood of this point, the decomposition of Hamiltonian’s 
series of powers with the accuracy up to the fourth power of the X, Y 
coordinates and the PX, PY impulses. We will have: 

H=H2(X,Y,PX,PY)+H3(X,Y)+H4(X,Y)+R5(X,Y),                               (11)

Where Hk,(k=2,3,4) there is a homogeneous k-grade, and the R5 
rest of the decompose in the Taylor series. For the studied case the 
square shape and the 3 and 4 forms are equal to:

( )( )2 2 2 2
2 0.5 0.68942 0.32466 0.17922 1.19431X Y X YH X Y P P XY YP XP= − + + + + + −     (12)

H3=0.1667(1.4248X3-0.7599X2Y-2.007XY2+0.1931Y3)            (13) 

H4=0.04167(-4.01396X4+3.7127X3Y+11.6388X2Y2-2.8827XY3-
1.5419Y4)                 (14)

m1 α N1 S1

x* y* x* y*
0.01 0.8583 1.15589 1.15589 1.39868 -0.22286
0.01 0.8584 1.15597 1.15597 1.41168 -0.12379
0.01 0.8585 1.15604 1.15604 1.41684 -0.05223
0.01 0.85853 1.15606 1.15606 1.41760 -0.03417
0.1 0.715 1.34188 1.34188 1.34865 -0.45766
0.1 0.717 1.34324 1.34324 1.44139 -0.11335
1 0.48965 1.63351 1.63351 0.93934 -1.05917
1 0.505 1.66022 1.66022 1.82285 -0.00771
10 0.291 1.84521 1.84521 2.19692 -0.00052
100 0.2 1.82945 1.82945 0.82914 -0.02594
1000 0.2 1.81083 1.81083 2.10424 -0.05038

Table 2: Possibilities of SCS Mathematica.

m1 α N1 S1

λ1,λ2 λ3,λ4 λ1,λ2 λ3,λ4

0.01 0.8583 ±1.30918 ±1.12374i ±0.28434i ±0.51826i 
0.01 0.8584 ±1.30792 ±1.12295i ±0.49471i ±0.32201i 
0.01 0.8585 ±1.30666 ±1.12216i ±0.45941i ±0.36935i 
0.01 0.85853 ±1.30627 ±1.12197i ±0.00440i+0.36926i ±0.00440-0.36926i 
0.1 0.715 ±1.19131 ±1.06789i ±0.34443+0.53193i ±0.34443-0.53193i 
0.1 0.717 ±1.17894 ±1.06051i ±0.40784+0.56449i ±0.40784-0.56449i 
1 0.48965 ±1.36716 ±1.30616i ±0.74472+0.82809i ±0.74472-0.82809i 
1 0.505 ±1.23329 ±1.12811i ±0.75807+0.83104i ±0.75807-0.83104i 
10 0.291 ±2.50383 ±2.63038i ±1.6617+1.88497i ±1.6617-1.88497i 
100 0.2 ±8.22619 ±8.56881i ±15.3124 ±8.390991i 
1000 0.2 ±27.1564 ±28.0709i ±17.7615+19.8928i ±17.7615-19.8928i 

Table 3: Values   for stationary points Ni and Si.
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Berkgof’s theorem on Hamiltonian normalization indicates that 
first such an un-generated transformation (X,Y,PX,PY)→(p1, p2,q1,q2) 
should be found that would exclude from H2 the square form the 
products of impulses and coordinates (p1q1, p2q1, q1q2, q2p1, q2p2, 
p1p2) and leave only their squares 

1 2 1 2

2 2 2 2, , , .p p q q  In addition, the 

coefficient of the sum ( )1 1

2 2p q+ must be the size 11

2 2
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2 2
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− = − , where the λ1,λ3 different values   

of the matrix are different A. We will look for these transformations 
in the form of:
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Where B4 is an unknown matrix of size 4×4.  The matrix 
elements, after performing the necessary matrix transformations, are 
determined from the system of linear equations of the order of 16:

C16z=0                          (16)

Where ZT=(b11, b12,…,b44) the vector transposed by the size 16 is 
made up of the matrix elements 

11 12 13 14

21 22 23 24
4

31 32 33 34

41 42 43 44

b b b b
b b b b

B
b b b b
b b b b

 
 
 =  
  
 

 .                      (17)

C16 is a matrix of size with known elements. For point S1, a simplex 
matrix B4 exists and is equal to:

4

0.655878 0.96524 1.88012 1.43332
4.22743 4.70206 0.7917 1.79003

.
1.59432 2.34632 0.148299 0.758111

0 0 0.968621 0.658175

B

− − − 
 − =
 − − −
 
 

           (18)

By making the corresponding transformations the forms K2, 
K3, K4 of Hamiltonian K (written in the new coordinates) will be 
determined from the relations: 

( ) ( ) ( ) ( )2 2 2 2 2 2 2 2
2 1 1 1 2 2 2 1 1 2 2

1 1 0.247354 0.161002 ,
2 2

K p q p q p q p qσ σ= + − + = + − +

3 2 2 3
3 1 1 2 1 2 2

2 2 2
1 1 1 2 1 2 1 1 1

2 3 2
2 1 1 1 2 1 2 2

2
2 2 1 1 2 2 1 2

1.52247 2.75988 0.560614 0.555805

4.33427 13.6424 8.14701 11.8376

8.80617 1.65267 5.45395 16.1243

9.30725 25.8349 18.3724

K p p p p p p

p q p p q p q p q
p q q p q p p q

p q p q q p q q

= − − − + +

+ + + + +

− − − −

− − − 2
1 2

2 2 2 3
1 2 2 2 1 2 2

7.0171

14.0106 9.47119 9.47983 4.134 ,

q q
p q p q q q q

+ +

+ + − +

4 3 2 2 3
4 1 1 2 1 2 1 2

4 3 2 2
2 1 1 1 2 1 1 2 1
3 2 2 2 2 2
2 1 1 1 1 2 1 2 1

3 3
1 1 2 1

1.74247 2.96036 2.1337 5.36404

1.99884 11.3635 44.9959 47.2451

12.9554 30.1269 33.4298 2.83397

22.8284 43.3045 22.588

K p p p p p p p
p p q p p q p p q
p q p q p p q p q
p q p q q

= − − + + +

+ + + + +

+ + + − −

− − − 4 3
1 1 2

2 2 3 2
1 2 2 1 2 2 2 2 1 1 2

2 2
1 2 1 2 2 1 2 1 1 2

2 3 2 2 2
2 1 2 1 2 1 2 1 2 2
2 2
2 2

13.7101

52.0847 53.0885 14.0642 64.3346

65.2487 11.9894 84.7749

151.297 99.8009 34.0675 30.8765

9.92384 103.7

p q
p p q p p q p q p q q
p p q q p q q p q q
p q q q q p q p p q
p q

− −

− − − − −

− + + +

+ + + + −

− − 2 2 2 2
1 1 2 2 1 2 1 2

3 3 3 4
1 2 2 2 1 2 2

33 175.458 164.82

41.8947 67.5526 120.569 32.9581 .

p q q p q q q q
p q p q q q q

− − +

+ + + −

Normalization in Berkgof sense of the cubic form and 
Hamiltonian’s fourth order form

In order to move to the angles-of-action variables, we will use 
Berkgof’s classic transformation:

1 1 1 2 2 2

1 1 1 2 2 2

2 sin , 2 sin ,

2 cos , 2 cos ,

q q

p p

τ θ τ θ

τ θ τ θ

 = =


= =

                  (19)

where the new variables τ1, τ2, θ1, θ2 are angular-action variables. 
If we write the new Hamiltonian F in the form:

F(θ1, θ2,τ1,τ2)=F2(τ1,τ2)+F3(θ1, θ2,τ1,τ2)+ F4(θ1, θ2,τ1,τ2)+…,         (20)

then after performing the corresponding transformations we obtain: 

F2(τ1,τ2)=σ1τ1-σ2τ2= 0.49470788472448207τ1-0.3220047802085036τ2 (21) 

In the vicinity of the stationary point the Hamiltonian equations 
in the new coordinates are expressed by the formulas:

1 2 3 4 2 2 3 4

1 1 1 2 2 2

1 3 4 2 3 4

1 1 2 2

..., ...,

..., ...,

d F F F d F F F
dt dt
d F F d F F
dt dt

θ θ
τ τ τ τ τ τ

τ τ
θ θ θ θ

∂ ∂ ∂ ∂ ∂ ∂ = + + + = + + + ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ = − − + = − − +
 ∂ ∂ ∂ ∂

      (22)

The Arnolid-Mozer theorem requires the construction of yet 
another canonical transformation 

(θ1, θ2,τ1, τ2)→(ψ1,ψ2, T1,T2 )                      (23)

which would nullify the third order shape in the Hamiltonian 
transfomation, and would exclude from the shape of the four 
phased angles, yet leaving the corresponding square shape F2(τ1,τ2) 
unchanged.

We will look for this transformation into form:

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1 13 1 2 1 2 14 1 2 1 2

2 2 23 1 2 1 2 24 1 2 1 2

1 1 13 1 2 1 2 14 1 2 1 2

2 2 23 1 2 1 2 24 1 2 1 2

, , , , , , ,

, , , , , , ,

, , , , , , ,

, , , , , , ,

V T T V T T

V T T V T T

T U T T U T T

T U T T U T T

θ ψ ψ ψ ψ ψ

θ ψ ψ ψ ψ ψ

τ ψ ψ ψ ψ

τ ψ ψ ψ ψ

 = + +


= + +


= + +
 = + +

                     (24)

where unknown functions V13,V23,U13,U23 are third order shapes, and 
V14,V24,U14,U24 are fourth order forms with respect to T1,T2.

Performing the transformation (22) by means of the determined 
functions V13,V23,U13,U23,V14,V24,U14,U24 is obtained for the 
Hamiltonian W in the vicinity of the stationary point S1 with the 
coordinates (10), calculated for the m1=0.01 α=0.8584, final form:

W(ψ1,ψ2, T1,T2)=W2(T1,T2)+W4(T1,T2)+F5 (ψ1,ψ2, T1,T2)+…, where

W 2 ( T 1 , T 2 ) = σ 1 T 1 - σ 2 T 2 = 0 . 4 9 4 7 0 7 8 8 4 7 2 4 4 8 2 0 7 T 1 -
0.32200478020850365T2                (25)

( )

( )

2 2
4 1 2 20 1 11 1 2 02 2

20 11 02

4 1 2

, ,
-41.5987, -458.902, 64.1789 .

, 65.918 0.

W T T c T c TT c T
c c c

W σ σ

= + +

= = =

= ≠

                  (26)

Thus, the purpose of all the above transformations consisted in 
the fact that after their execution the square W2 and the fourth order 
W4 depend only on the impulsesT1, T2, and the cubic form is canceled. 
(W3≡0).

Similar results were obtained for the other equilibrium bisectorial 
positions Si. This result indicates that all the calculations made in 
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SCS Mathematica are correct and consistent with the theoretical 
conclusions resulting from the symmetry of the studied gravitational 
model. Thus it can be concluded that stable stationary points in the 
first approximation are also stable in Liapunov sense [8-12]. 

Theorem 2
There are values   of the parameter m1and corresponding 

values   of the parameter for α which the stationary points of the 
boundary problem of the eight bodies are stable not only in the first 
approximation but are also stable in the Liapunov sense.

Conclusion 
There are values   of the parameters m1 and α for which the 

bisectoral stationary points Si of the boundary problem of eight bodies 
are stable in the first approximation and in the Liapunov sense. 
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