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Abstract
This paper describes an evolutionary robotics approach to study 
spatial cognition. Through the analysis of evolving neuroagents, run 
on behavioral, computational and evolutionary/development level, 
we show how relevant is considering the dynamic perspective in 
the observed phenomenon genesis and how useful can be using 
the evolutionary robotics methodology to address this issue. The 
experiments described in this short paper use simulated agents 
led by an artificial neural network and evolved through artificial 
selection to accomplish some spatial tasks commonly used in 
animal psychology. Results indicate that behaviors, especially 
biases, can be understood only taking into account the evolutionary/
development pathway of each agent.
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Introduction
Vertebrate species use geometric information and nongeometric 

or featural cues to orient that Gallistel [1] defines in the non-geometric 
property is any property that cannot be described by relative position 
alone. When both sources of information are present at the same time 
different behavioral patterns are observed: 

1. Geometric information overwhelms non-geometric cues 
(geometric primacy); 

2. Non-geometric cues prevail over geometric ones (non-
geometric primacy); 

3. Integration of both cues. 

When the first case was observed for the first time in rats studied 
by Cheng [2] and Margules and Gallistel [3], geometric primacy was 
explained postulating the existence of a geometric module: geometric 
and non-geometric information are processed separately, with the 
geometry module playing a dominant role. Non-geometric primacy 
and integration of cues do not support the modular hypothesis, 
that for some years have been critiqued (consider for example, 
Twyman and Newcombe, [4]). In this debate, some interesting hints 
come from the studies on humans. Hermer and Spelke’s [5] and 
Gouteux and Spelke’ studies [6] have tested adults that proved to 

*Corresponding author: Michela Ponticorvo, Natural and Artificial Cognition 
Lab, University of Naples “Federico II”, Italy, E-mail: michela.ponticorvo@unina.
it, orazio.miglino@unina.it

Received: March 03, 2016 Accepted: May 02, 2016 Published: May 09, 2016

be able to use both kinds of cues. In children a particular responses 
pattern emerges: in the experiments with children of about 2 years, 
the subjects could use the geometric information in almost every 
condition, but could use the non-geometric information only in some 
conditions [7-10]. When children grow older, at about 6 ages, the 
primacy of geometric information is overcome and they can use the 
non-geometric information consistently [11]. The children strange 
case is paradigmatic in indicating that the dynamic perspective 
fundamental role must not be neglected. To understand some 
relevant phenomena observed in natural organisms it is necessary 
to take into account the evolutionary/developmental perspective. 
Artificial Life techniques are a precious tool that can be employed to 
approach this issue. In this short paper we will show an example of 
how using evolutionary robotics methodology can help clarifying the 
evolutionary/development pathways that lead to a specific behavior 
and the corresponding computational/neural organization.

Materials and Method
The agent and its neural control system

We used a simulated agent, a round, 30 mm tall agent with a 
diameter of 55 mm. eight simulated proximity sensors are positioned 
around the agent’s circumference at a mid-height. Sensors can detect 
obstacles within a range of 3 cm. The agent is also provided with a 
visual sensory system with a visual field of 270 degrees wide and 1 m 
long, similar to the visual field of fish (private communication from 
Sovrano [12]). The perceived objects in the environment tending 
towards white were coded with a value of ‘0’ and the ones tending 
towards blue received a code of 1. The agent moves using two wheels 
located on either side of its simulated body, each controlled by 
a motor. The agent is also provided with a localization unit whose 
activation determines the agent stop. In our own experiment, we 
used a modified version of the ‘‘Evorobot*’’ simulator developed 
by Nolfi and Gigliotta [13], an environment created specifically for 
experiments with simulated populations of agents. The robot control 
system consists of an Artificial Neural Network with 16 input units, 7 
hidden units and three output units. The input layer consists of eight 
detectors for proximal stimuli and eight detectors for distal stimuli. 
The output layer consists of two motor units and one localization 
unit; agent behavior is determined by the activation of these units. 
The third output unit (the localization unit) temporarily halts the 
agent whenever its level of activation is higher than 0.5. In other 
words, the localization unit signals that the agent has identified a 
specific location, indicating a place recognition behavior.

Experimental Setting
The experimental setting for our study was similar to the setting 

in which Sovrano [12] conducted their work. Each experiment 
took place in an arena with a ‘‘reward area’’ in one corner. The first 
environment we used is the complete ‘‘geometric plus non-geometric 
arena’’ in which, the long side opposite to the reward corner, as well as 
the corners were colored blue: in the arena where both geometric and 
nongeometric cues are available, if an organism uses no information 
but the shape of the box, the agent will commit a rotational error. If 
it merges geometry and color information, it will choose the correct 
corner. Removing the blue wall from the complete arena, we obtain 



Citation: Ponticorvo M, Miglino O (2016) Studying the Development of Spatial Cognition with Evolving Neuro-Agents. J Comput Eng Inf Technol 5:2.

doi:http://dx.doi.org/10.4172/2324-9307.1000147

• Page 2 of 4 •Volume 5 • Issue 2 • 1000147

the ‘‘geometric arena’’ which is rectangular with four white walls and 
angular landmarks. Instead removing the geometric information 
from the complete arena that is the rectangular shape of the arena 
and the angular landmarks, we obtain a ‘‘non-geometric arena’’, 
square-shaped and with a blue wall. Square arenas were also used by 
Huttenlocher and Lourenco [14] in their experiments with toddlers. 
The square arena does not have resolutive geometric information so 
it is a good non-geometric.

Both rectangular environments were 56.8 × 25.6 × 20.0 (height) 
cm, while the square one was 56.8 × 56.8 × 20.0 (height) cm. In all 
environments, a circular reward sector was located in the bottom-
left corner with a radius of 8 cm. In the ‘‘geometric arena’’, the only 
available information is geometry, according to which we expect agent 
to choose the correct corner as well as the rotationally equivalent 
corner. In the ‘‘non-geometric arena’’, the blue wall disambiguates 
the task, so we expect the agent to choose the correct corner.

The evolutionary/adaptive process

We evolve the agents using a Genetic Algorithm with the first 
generation made up of 100 simulated agents, controlled by a feed-
forward neural network with random connection weights. We then 
test the ability of each agent to localize the reward area for 100 trials. 
At the beginning of each trial, the agent is positioned in the centre of 
the arena, facing in a random direction. We then allow the agent to 
move for 1,500 computation cycles. Every time the agent ‘‘identifies’’ 
the target area (activation of the localization unit greater than 0.5) 
it stops for 5 computation cycles and receives one ‘‘reward point’’. 
The agent’s final score is the total of reward points received during 

trials. After all agents have been tested, the best 20 agents are chosen 
to ‘‘survive’’ and ‘‘reproduce’’. The neural system for each selected 
agent is cloned five times.

During cloning, 35% of connection weights are mutated. The 
testing/selection/reproduction cycle is iterated for 100 generations. 
To investigate how the evolutionary/development pathway can have 
effects on the behavior of a agents and their neural structure we 
analyzed the effects of differing frequencies of exposure to different 
classes of spatial information, performing 11 experiments with 
different exposure to the arenas. On each experiment, we increase 
the proportion of trials conducted in the geometric arena (the 
exposure balance), beginning with 0% and increasing by 10% on each 
experiment. We replicate each experiment 20 times using different 
initial weights in each replication.

Results and Discussion
Agents’ behavior

Results show a clear interdependency between exposure balance 
and reward scores. The agents with the strongest ability to integrate 
geometric and non-geometric information are those that evolve for 
50% of trials in the geometric and for 50% in the non-geometric 
arena. Agents whose main exposure is to the non-geometric 
environment, agents who receive balanced exposure to both 
environments and agents whose main exposure is to the geometric 
environment display significantly different levels of reward scores 
(ANOVA: F(2,217)=12.191 P<0.001). To gain further insights into 
agent behavior (Figure 1), we group them according to their “skill”. 
Disoriented agents that fail to achieve a minimum level of acceptable 

Figure 1: Skill level, behavior classes and primacy behaviors in a pool of 220 agents (the agents with the highest level of reward scores in the last 
generation of each trial).
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performance in any of the environments (30 agents, 13.63% of the 
pool) are classified as level 0.

Specialists (106 agents, 48.18% of the pool) that achieve acceptable 
performance in just one of the environments are classified as level 1. 
This class includes 48 geometric specialists (21.81% of the pool) that 
are unable to orient correctly in the non-geometric environment and 
58 nongeometric specialists (26.36% of the pool). Rough generalists 
that perform well in two out of three environments (71 agents, 
32.27 % of the pool) are classified as level 2. Perfect generalists that 
achieve above threshold performance in all three environments (13 
agents, 5.9% of the pool) are classified as level 3. If we look over these 
skill levels, we will find different behavioral classes, depending on 
agents’ ability to localize the reward sector in the arenas. For level 
0 and level 3, we just have one behavioral class, as no permutation 
is possible. Instead, on level 1, we have three kinds of specialists: 
geometric specialist that orient only in geometric arena (48 agents, 
21.81%) and non-geometric specialists (58 agents, 26.36%) that orient 
only in non-geometric arena. Complete specialists that can orient in 
the ‘‘geometric plus non-geometric’’ arena only did not emerge in 
this pool. On level 2, we observe three kinds of rough generalists, 
agents that orient correctly in two of three environments: ‘‘complete 
plus geometric’’ generalists (11 agents, 5%), ‘‘complete plus non- 
geometric’’ generalists (56 agents, 25.45%) and ‘‘geometric plus non-
geometric’’ generalists (4 agents, 1.81%).

Does exposure balance determine this distribution? In other 
words: does agents’ evolutionary/development history determines 
their behavior? Yes, it does! Agents showing a specific kind of 
behavior emerge most frequently in environments where this kind of 
behavior gives them a selective advantage. Generalists emerge when 
the number of trials in the ‘‘geometric arena’’ and the ‘‘non geometric 
arena’’ is roughly balanced. In fact, if we compare the frequency of 
generalists in the three aggregated groups: unbalanced exposure to 
non-geometric environment, balanced exposure and unbalanced 
exposure to geometric environment, the chi 2 test is significant for 

non-geometric specialists: chi 2=8, p=0.0183. By contrast, specialists 
emerge more frequently when agents are mainly exposed to just one 
of the two environments. Comparing the frequency of specialists in 
the three aggregated groups (unbalanced exposure to nongeometric 
environment, balanced exposure and unbalanced exposure to 
geometric environment) the chi 2 test is significant for non-geometric 
specialists: chi 2=32.14, p<0.001, as well as geometric specialists: chi 
2=38.62, p<0.001.

Agents’ neural organization

To understand agents’ neural organization we have systematically 
lesioned agents’ neural networks, in particular to the healthy subjects 
that, in our pool, are the perfect generalists. The neural encoding 
underlying various spatial information patterns has been determined 
by the whole data set about perfect generalists. The chart shows that 
there is no dissociation between the processing of geometric and 
non-geometric cues. In the huge majority of cases (118 out of 128), 
lesions produce a general loss of performance that affects the ability to 
perform either task. In not one case, do we observe a loss of the ability 
to perform one task and the conservation of the ability to perform the 
other task. This implies that it is possible to evolve geometric and non-
geometric primacy in the absence of specific modules performing 
these functions: a modular neural organization in not necessary. 

Conclusion
The experiments described in this paper show clearly that it is 

fundamental to take into account the evolutionary/development 
history to understand a present behavior. As shown in the present 
paper, the biases in spatial behavior can be understood only in a 
dynamic perspective; data pictured in a single moment do not shed 
light on this kind of problems. In the present paper, the exposition 
to specific environment cues during the evolutionary process 
determines the behavior observed at the end. The evolutionary/
development perspective helps understanding those phenomena and 
evolutionary robotics techniques helps studying the evolutionary/

Figure 2: Performances of lesioned perfect generalists on the geometric and nongeometric task.
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development perspective. Indeed evolutionary robotics techniques 
allow to effectively following this approach, not easily feasible with 
natural organisms, because it is virtually impossible to control all the 
potential error sources (i.e. exposition to other cues during evolution).
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