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Abstract
In this study, AISI 1017 low carbon steel was subjected to severe 
shot peening (SSP) by using 35 mmA Almen intensity. SSP led 
to surface severe plastic deformation by the impingement of the 
shot media with very high air pressure. 40-50 µm highly deformed 
nanograin layer was formed right below the surface by means of 
sub grain creation with dislocation interaction and non-homogenous 
strain. Nanoindentation tests were performed to detect the hardness 
and reduced modulus of fine grained layer and the results reveal 
the hardness increased up to almost 1,5 times with compared to 
core. The reduced modulus is also influenced from very hard 
nanocrystalline layer. 
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 Introduction
Nanostructured materials have been assessed as crucial for 

metallurgical, industrial and biological environments [1-3]. These 
materials have been manufactured with two methods, one is bottom-
up and the other is top-down. The top-down method called “severe 
plastic deformation (SPD)” methods principle is to create large 
deformations on the coarse grain bulk materials and convert them into 
bulk nanostructured materials [4]. The great interest have been shown 
to these materials due to having very high hardness and strength [5]. 
Also electrical, magnetic and superplastic behaviors can be improved 
via nanograin formation mechanisms [6]. Besides, the application of 
severe plastic deformation to create bulk nanostructured materials 
have some limitations. Higher force requirements, non-uniform 
strain exposion, unexpected material failures and also limited sample 
sizes are given as the examples [7]. 

Most failures of metallic materials such as fatigue, fretting fatigue, 
corrosion and wear are directly related with surface characteristics 
[8,9]. Therefore, refining the surface grain layers by using surface 
severe plastic deformation (S2PD) applications could be beneficial for 
overcoming such type of these failures [10,11]. S2PD methods have 
been applied to induce nanograin layer on and just below the surface 
and cover the most common applications such as surface mechanical 
attrition treatment (SMAT) [12], surface nanocrystallization and 
hardening (SNH) [13], ultrasonic nanocrystal surface modification 
(UNSM) [14-17]. In recent years, severe shot peening (SSP) has been 

applied for exposing high plastic deformation to surfaces besides 
increasing fatigue strength by inducing compressive residual 
stresses [18-21]. The studies reveal SSP influence with Almen 
intensity higher than the conventional ones behaves like the 
methods mentioned above [22-24]. Application of SSP is much 
more easier, only changing the initial parameters of shot peening 
equipment will be adequate. Also type of the application provides 
convenience for complex and intrinsic samples regardless of size 
and dimensions [4,25-27].

In this study, AISI 1017 low carbon steel was applied to the SSP 
with 35mmA Almen intensity. Then the surface was investigated 
by using optical microscopy, scanning electron microscopy (SEM) 
and high resolution transmission electron microscopy (HRTEM). 
Nanoindentation tests were performed to show the hardness change 
and compare the results with the microstructural observations. 

Experimental
AISI 1017 low carbon steel specimens with the following chemical 

compositions in mass (%) C 0,15-0,20, Mn 0,30–0,60, P 0,04(max), S 
0,05(max) and balance Fe. The specimens were ground with 180-1200 
grit papers then mechanically polished. Annealing treatment has been 
applied at 8100C for 30 minutes and then cooled in the furnace to 
room temperature. Air blast severe shot peening was performed via 
2000S Peenmatic shot peening equipment. 35 mmA Almen intensity 
was selected to compensate severe plastic deformation conditions. 
Shot peening parameters used for the treatment are shown in Table 1.

The specimens were analyzed via optical microscopy (Zeiss AXIO 
A1 optical microscope), SEM (Tescan MAIA3 XMU) and HRTEM 
(JEOL JEM 2100). The specimens were ion polished as mechanically 
thinning to a thickness of 80 µm by disc grinding and to about 5 µm by 
dimple grinding from metal side. Hardness distribution from surface 
to interior was determined by using Schimadzu DUH-W201S ultra 
micro-hardness tester. The applied load was 50 mN with a duration 
of 10 s.

Results and Discussion
SSP applied with 35mmA Almen intensity leads to form highly 

deformed, oriented layer with a thickness of approximately 40-50 µm. 
The peened specimens microstructure can be seen from Figure 1. The 
deformed layer shows SSP is an effective way to expose severe plastic 
deformation at least as much as SMAT and etc [28,29]. 

In SEM microstructure (Figure 2) reveals the deformed layer in 
detail. Homogenous ferrite-pearlite structure in the core structure 
vanishes in the deformed layer. Bagherifard and Guagliano [30] 
show the distinction of conventional shot peening (CSP) and SSP 
effect on low alloy steel and the heavily deformed layer is much 
thicker than CSP however the surface peened with SSP is much more 
deteriorated which is similar to this study. Besides creation of ultra 
fine grain layer, the treatments leads to surface deterioration. Higher 
pressure application for SSP can not prevent hazordous effects on the 
[31] surface. Thus, surface quality and integrity should be assessed 
simultaneously with microstructural improvement during SSP. 

Figure 3a shows typical HRTEM observations of highly deformed 
surface layer. During deformation, cementite phases are broken 
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where subgrain formations under 100 nm are observed in Figure 3b 
particularly inside the subgrains. Since, Moering et al. presents white 
layers in HRTEM investigations prove the fragmentation of Fe3C 
compounds due to supersaturation of carbon into nanocrystalline 
alpha-iron [31]. The grain refinement is formed as non-uniform 
and non-homogenous. Since the grain sizes could be assessed within 
a broad range (40-400 nm). Also SMAT application to ultra low 
carbon steel forms the grain size distribution with is between 10 
nm and 100 nm [32]. However, the microstructure has high density 

dislocations and interactions (Figure 3c) and stacking faults near the 
grain boundary (Figure 3a). Also in Figure 3b, ultrafine subgrains 
are distinguished via grain boundaries. In severe plastic deformation 
treatments the deformation intensifies near the grain boundaries [33] 
and subgrain is formed so this is consistent with the study HRTEM 
investigations. Typical BCC metals for instance low alloy steels have 
high stacking fault energy [6]. Exposion of severe plastic deformation 
leads to dislocation movement, tangles and dense walls (Figure 3c). 
This dislocation behavior can be accepted as the first step of subgrain 

Figure 1: The cross section optical microscope observation of severe shot peened specimen.

Figure 2: SEM microstructure of  the ultrafined grain layer.

Almen intensity Shot size Coverage (%) Time (s) Pressure (psi) Arc height (mmA)
35mmA S230 200 20 105 0,35

Table 1: The air blast severe shot peening initial parameters.
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Figure 3: HRTEM structures of severe shot peened specimen.

Figure 4: Reduced modulus and hardness alteration of the severe shot peened specimen.

formation [1]. The actual subgrains and its boundaries are created 
by high dislocation interactions regardless of active or inactive type. 
Subgrains are formed in the original grains inside original grain 
boundaries (Figure 3b) [6]. 

According to the nanoindentation measurements, surface 
have been exactly influenced from severe plastic deformation. 
Thus, the nanohardness values are much higher than the core. The 
hardness alteration is compatible with optical microscope and SEM 
observations. The topmost layer (approximately 40 µm) mostly 
influenced from severe plastic deformation could be easily realized 
according to the orientation of grains. The plastic deformation 
effect has been substantially vanished after 150 µm (Figure 4). 
Also the reduced elatic modulus has been investigated by means of 
indentation-depth curves and Oliver & Pharr mathematical approach 
[34]. Nanocrystalline layer with high hardness leads to increase 
reduced modulus through the interior of 40 µm. 

Conclusions
In this study, AISI 1017 low carbon steel was exposed to SSP with 

an Almen intensity of 35 mmA. The effect severe plastic deformation 

created by SSP were analyzed via optical microscopy, SEM, HRTEM 
and nanoindentation tests. Following results can be drawn according 
to the practical approaches.

Optical microscope and SEM observations presents the deformed 
and oriented layer which has so much distinctions from the core 
structure on and right below the surface. The thickness of the layer 
can be identified approximately 40 µm.

According to the HRTEM results, SSP forms nanocrystalline 
layer with the grain size of 40 nm to 400 nm. The distribution 
of the grains and also grain sizes can be assessed as non-uniform 
and non-homogenous. The HRTEM approach reveals the for-
mation of nanocrystalline layer is directly related with disloca-
tion movement, interactions and then sub-grain formation. In 
the figures highly dislocation densed grains and subgrains are  
distinguished.

Nanocrystalline layer makes the structure so hard with compared 
to interior. Moreover, reduced modulus on the surface is also 
improved. The change in elastic modulus and hardness could pave 
the way for particularly tensile strength.
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