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Abstract
We investigate the effect of drifting ions on compressive and 
rarefactive solitary waves in a five component plasma. Heavier 
pair ions, two components of electrons and drifting lighter ions 
form the five components. We use the pseudo-potential method to 
investigate the conditions for the existence of solitary waves. We 
find that both the Sagdeev potential and amplitudes of solitary waves 
are dependent on the velocities of the drifting ions: the amplitude 
of both compressive and rarefactive solitary waves increases with 
increasing drifting velocities of the lighter ions.
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46], streaming electrons [44,47,48] and even streaming dust [49,50,51] 
has also been exhaustively investigated.

A cometary plasma is a genuine multi-ion plasma. While positively 
charged oxygen ions were expected to be a component formed by the 
dissociation of water molecules [52], other positively charged ions 
such as H2

+, He+, He2
+, C+, OH+, H2O

+, H30
+, CO+, S+ etc. have also 

been observed [53,54]. However, it was the unexpected discovery of 
negative ions, in three broad mass peaks of 7-19, 22-65 and 85-110 
amu with energies ranging from .03 to 3.0 keV, that made cometary 
plasmas genuine multi ion plasmas [55]. And, the unambiguous 
identification of negatively charged oxygen ions (Oˉ), opened up the 
exciting prospect of modelling O+ and Oˉ as an ion pair [37,38,40,56].

As regards electrons, observations by the spacecraft ICE at comet 
Giacobini-Ziner revealed the existence of three components of 
electrons: a cold, mid, and hot component where the mid component 
was the photo-electrons generated by the photo-ionization of 
water molecules [57]. In a related modelling study [58], analysis of 
gas production rates at comets, noticed a double peak structure of 
photo-electrons. And in a very recent modelling study, two kappa 
distributions were fitted to the observations of electrons made at 
comet 67P/Churyumov-Gerasimenko [59].

Thus our plasma is composed of five components: two components 
of electrons, both described by kappa distributions, drifting hydrogen 
ions (to model the solar wind impacting the comet) and positively and 
negatively charged oxygen ions. Previous studies on the influences of 
streaming components have been mentioned above.

We find that the plasma supports both rarefactive and compressive 
solitons [60]. Also the amplitudes of both types of solitons are 
sensitively dependent on the drift velocity of the lighter ions.

Basic equations

As mentioned above we are interested in studying the effect of 
streaming ions on IA solitary waves in a five component plasma [61]. 
The five components are a pair of oppositely charged heavier ions, a 
streaming lighter ion component and two components of electrons 
[62] (a hotter solar component denoted by ‘se’ and a colder cometary 
component of photoelectrons denoted by ‘ce’). The dimensionless 
distribution of the electron components is given by
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In (1) nj is the dimensionless density normalized by its equilibrium 

value. ѱ is the potential normalized by 1Bk T
e

 where ‘e’ is the electronic 

charge and kB is the Boltzmann’s constant. T1 is the temperature of 

the negatively charged heavier ions. 
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temperature and κj are the spectral indices [63].

In what follows, ‘i’ denotes streaming ions while the indices 1 and 
2 would respectively denote negatively and positively charged heavier 
ions [64]. Thus the equations of motion for the drifting ions and the 
heavier ions are given by

Introduction
A conventional electron-ion plasma supports a wide variety of 

nonlinear waves. These waves have been thoroughly researched since 
the path breaking study of Washimi and Taniuti [1], who investigated 
small amplitude ion acoustic (IA) waves in an unmagnetized plasma 
consisting of cold ions and hot, isothermal electrons by deriving the 
well known K-dV equation. At about the same time, Sagdeev [2] 
used his pseudo-potential approach to study the basic properties of 
arbitrary amplitude IA solitary waves. This study was quickly extended 
to plasmas containing two components of electrons with different 
temperatures [3,4]. More than one component of electrons, gave way 
to more than one component of ions and Ferrante [5] studied the 
properties of IA solitons in two and three ion plasmas.

Owing to the ease with which it could be observed, the pioneering 
studies mentioned above were extended in every possible way. Thus 
various aspects of IA solitary waves were again explored in two 
temperature electron plasmas [6-13], multi-ion plasmas [14-21], non-
Maxwellian component plasmas [22-32], finite ion temperature plasmas 
[33,34], pair (electron-positron)-ion plasmas [35,36] and heavier pair 
ion with another lighter ion component plasmas [37-40]. In addition to 
the very general plasma compositions and models mentioned above, the 
effect of streaming plasma components on ion acoustic and dust acoustic 
solitary waves has also been considered. The effect of streaming ions [41-
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In (2) to (4), ‘x’ and ‘t’ have been normalized respectively 

by 
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 with νi0 now being the normalized drift 

velocity of drifting ions. Also these adiabatically heated ions obey
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In the above, symbols n denote the densities; z, the charge 
numbers and m, the masses. The normalized equation of continuity 
for the streaming ion is 
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While that for the heavier ions is 
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Finally, we need the Poisson’s equation, which in its dimensionless 
form, is given by
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In (8)
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where the index ‘0’ indicates equilibrium values of densities.

Nonlinear analysis

We now use equations (2) to (8) for a nonlinear analysis. We 
therefore define a transformed coordinate ξ = x-Mt where M is 
the speed of the localized structure moving with the frame [65]. 
Assuming that all dependent variables are functions of ξ, we can, 
from (6), obtain the expression for the streaming ion density as
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Expressions for n1 and n2 can be easily got from (10) by putting 
νi0 = 0 and replacing νi respectively by ν1 or ν2. Similarly, from (2) we 
obtain
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It may be noted at this point that ni reduces to the corresponding 
expression in Shan and Mushtaq [66] for αi = βi = γi =1. Similar 
expressions can be obtained for both ν1and ν2.

Having thus obtained expressions for ni, n1 and n2 and for nse 
and nce from (1) and substituting into (8) and following standard 
procedures allows one to write down the energy integral as
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Where V(ѱ) is now given by
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As a check on (14) we note that it resembles the expression for 
the Sagdeev potential in [66] if allowance is made for the extra 
components in our model. From the condition for the existence of 
solutions [37,66], we can show that the critical value of M for the 
existence of the two types of solitons (rarefactive and compressive) 
is 
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The small amplitude approximation for V(ѱ) is
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and
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As a check on our results we find that expressions (18) and (19) 
closely resemble that given in [37] if allowance is made for the fact 
that we now have drifting ions.

The soliton solutions for potentials of the type (14) is given by [37] as 
2
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where 0
3 a
b

ψ = −  is the amplitude and 0
2

a
δ = −

−
 is the width 

of the soliton.

Results
Though our relations are applicable to any plasma, we are 

interested here in parameters relevant to comet Halley. The density 
of hydrogen ions observed at the comet was ni0 = 4.95 cm-3 with a 
temperature Ti=8×104 K. The solar electron temperature at the 
comet was Tse=2×105 K [52]. Hence the temperature of the colder 
photoelectrons was set at Tce=2×104 K. The Oˉ ions were observed 
with an energy ~1 eV with densities ≤ 1cm-3 [55]. Thus we keep 
n10=0.05 cm-3 and n20 = 0.5 cm-3. 

Figure 1 depicts the Sagdeev potential V (ѱ) and soliton structure 
for the first solution for densities ni0 = 4.95 cm-3, n20 = 0.5 cm-3 and n10 
= 0.05 cm-3, temperatures Tse=2×105 K, Tce =1.5×104 K and Ti = 8×104 
K, T1=T2=2.8×104 K, charge numbers z1 =5, z2 =3 and zi =1, M = 1.2, 
spectral indices κse = 3 and κce = 5 as a function of drift velocities νi0 = 
0 ( curve (a)), νi0 = 0.4 ( curve (b)) and νi0 = 1.0 ( curve (c)). The figure 
shows that the depth of the potential V (ѱ) increases with increasing 
νi0. Also the magnitude of the amplitude of the solitary wave, which is 
rarefactive in nature, also increases with increasing νi0.

Figure 2 also depicts the Sagdeev potential V(ѱ) and solitary 
structure for the second solution for densities ni0 = 4.95 cm-3, n20 = 
0.5 cm-3 and n10 = 0.05 cm-3, temperatures Tse=2×105 K, Tce =1.5×104 
K and Ti = 8×104 K, T1=T2=2.8×104 K, charge numbers z1 =5, z2 =3 
and zi =1, M = 1.2, spectral indices κse = 3 and κce = 5 as a function of 
drift velocities νi0 = 0 ( curve (a)), νi0 = 0.4 ( curve (b)) and νi0 = 1.0 
( curve (c)). The figure shows that the depth of the potential V(ѱ) 
increases with increasing νi0. Also the magnitude of the amplitude of 
the solitary wave, which is now compressive in nature, also increases 
with increasing νi0.

Similar to Figure 1, the amplitude of the rarefactive solitons 
increases with increasing ni0, Ti and T1 and decreases with increasing 
κse, z1, z2 and n20. This is true for both νi0 = 1.0 and νi0 ≠ 0 .

And similar to Figure 2, the amplitude of the compressive solitons 
increases with increasing ni0, Ti and T1 and decreases with increasing 
κse and n20. This is true for both νi0 = 1.0 and νi0 ≠ 0 .

Also a comparison of Figures 1 and 2 show that the amplitude 
of rarefactive solitons is of much greater magnitude than the 
compressive solitons.

Figure 1: Variation of  Sagdeev potential ( )V ψ   and solitary wave 
amplitude with drift velocity 0iv .

Figure 2: Variation of Sagdeev potential )(ψV  and solitary wave 
amplitude with drift velocity 0iv . 



Citation: Varghese A, Willington NT, Hussein T, Shilpa S, Venugopal C (2017) The Effect of Drifting Lighter Ions on Solitary Waves in Heavier, Pair Ion 
Plasmas with Kappa Described Electrons. J Phys Res Appl 1:1.

• Page 4 of 5 •Volume 1 • Issue 1 • 1000103

Conclusions
We have investigated the effect of drifting lighter ions on 

rarefactive and compressive solitary waves in a five component 
cometary plasma. Drifting lighter ions, heavier pair ions and two 
components of electrons, described by kappa distributions, form the 
five components. We find that the amplitude of the solitary waves is 
sensitively dependent on the drift velocities of the lighter ions: the 
amplitudes increase with increasing drift velocities, increasing lighter 
ion densities and temperatures of these ions. Thus these solitary waves 
are most likely to be observed under disturbed solar conditions when 
these parameters of the solar wind are large. And finally our relations 
can also be considered as generalizations of earlier studies [37,66]. 
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