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Abstract
Elevated anthropogenic nitrogen (N) deposition has become a 
limiting factor for plants instead of a nutrient for its dramatic rising at 
globally scale, which greatly affects the process of carbon (C) cycle 
from individual plant to ecosystem, and even global levels. It could 
affect biogenic carbonyl emissions as an important component 
of carbon pool from plants, but this aspect has not yet been 
investigated. In this study, we performed a simulated N deposition 
experiment (100 kg N·ha-1·y-1) on two native tree saplings planted in 
a nursery in South China. Results showed that three main biogenic 
carbonyls, i.e. formaldehyde, acetaldehyde, and acetone from 
tree leaves all had distinct seasonal variations, with much higher 
emission rates in the wet season than in the dry season. Elevated N 
addition significantly depressed the emission of biogenic carbonyls 
in the dry season, but not in the wet season. No big differences 
were observed in carbonyls emissions from the two tree species 
responding to N deposition both in the wet season and in the dry 
season. Thus, we concluded that N deposition might drive plants to 
change carbon allocation and reduce carbon loss when as a limiting 
factor in the dry season. This finding is of significance for the theory 
of carbon allocation and plant adaptability strategy under elevated 
N deposition. 
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[7]. More importantly, biogenic VOCs often plays key ecological 
functions, e.g. resisting to stress, communicating with other plants 
as signal and serving for plant survival, etc. [8,9]. Therefore, biogenic 
carbonyl compounds are very significant for carbon cycles of forest 
ecosystems for their formation and emission from plants besides their 
key roles in atmospheric chemical processes, e.g., contributing to 
the organic components of aerosols, ozone [10], peroxyacyl nitrates 
[11,12], and haze weather in cities [13].

Biogenic carbonyls are derived from photosynthetic products of 
plants, so their emissions are remarkably controlled by the factors 
controlling plant growth including light, temperature, humidity [14-
17], water stress [12,18,19], and plant nutrients.

N as an essential nutrient for plant growth, is becoming a limit 
factor for the dramatic rising of N deposition at the globally scale 
due to human activities [20]. At present, there are 11% of the world’s 
natural vegetation receiving N deposition higher than the “critical 
load’’ threshold of 10 kg N·ha-1·y-1 [21]. N deposition brings significant 
negative effects on plant growth and the structure and functions of 
terrestrial forest ecosystems [22-24], also including carbon allocation 
and plant survival [25,26].

N deposition affects the plant C pool and ecosystem C cycles 
[27] based on the changes in net photosynthetic rate, net primary 
productivity, litterfall, soil CO2 emission, etc. responding to N 
deposition [27-29], never in biogenic carbonyls emissions from plant 
leaves. 

N deposition is assumed to affect biogenic carbonyls release 
for biogenic carbonyls as a part of C from plant and an important 
component of C cycles. The responses of biogenic carbonyls 
emissions to elevated N deposition depend on whether plants favor 
elevated N deposition which could drive plants to change its carbon 
allocation for better adaptability and even survival, according to the 
researches that elevated N further worsened water stress [30] in the 
dry season, which forced plant to reallocate carbon between VOCs 
and nonstructural carbon (NSC) [26] for better surviving the stressed 
environment [25]. Therefore, it is of significance to study the effects 
of nitrogen deposition on biogenic carbonyls emissions for better 
understanding of the adaptability mechanism of carbon allocation in 
plants and C cycle of forest ecosystems. 

Here, we studied the effects of N deposition on carbonyls 
emissions from intact leaves of native tree species in south China. 
A hypothesized was proposed that N deposition could have no 
significant effects in biogenic carbonyls emissions and no change in 
carbon allocation to form carbonyls when as a nutrient while have 
negative effects in the emissions by depressing carbon allocation to 
form carbonyls when as a stress. 

Materials and Methods
Field site

The experiments were performed at the Dinghushan Biosphere 
Reserve (DHSBR) located in the middle of Guangdong Province in 
southern China (112°10′E, 23°10′N). The reserve covers an area of 1,155 
ha and has a typical monsoon and humid tropical climate. The average 
annual relative humidity is 80%, and the mean annual temperature is 

Introduction
Carbonyl compounds are unique volatile organic compounds 

(VOCs) having very strong reactive capacity and short life span 
ranging from several hours to several days. Plant emission is one 
of the important carbonyl sources, accounting for 24% of the total 
volatile organic compounds released by plants [1,2]. The investment 
of carbon into biogenic VOCs can lead to substantial carbon loss 
in plant leaves [3-6] and considerable loss of photochemical energy 
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21.0°C. The average temperatures of the coldest (January) and hottest 
(July) months are 12.6°C and 28.0°C, respectively. The mean annual 
rainfall of 1,927 mm has a distinct seasonal pattern, with 75% rainfall 
from March to August and only 6% from December to February. 
The N deposition was 40.23 kg N·ha-1·year-1 in 2011 [31]. The soil is 
lateritic red earth formed from sandstone. 

Experimental treatments

Two N addition treatments were performed: control (without N 
addition) and N addition (100 kg N·ha-1·y-1; N100). N deposition at 
100 kg N·ha-1·y-1 was reported to significantly impact plant growth 
[32] and soil N2O emission [33] in this region. Therefore, this level of 
N deposition (100 kg N·ha-1·y-1) is considered as a threat to the health 
and function of forests ecosystems in tropical regions and was used 
in this study. Three 3.5 m×1 m plots were established, and each plot 
was separated by a sun board of 50-cm height. Two tree species, i.e., 
Ormosia pinnata and Cinnamomum burmannii were chosen to study. 
O. pinnata and C. burmannii are native even broadleaved tree species 
and widely planted in south China for their strong adaptability to 
environments. Five one-year-old seedlings of each tree species were 
transplanted at each plot of the study site. NH4NO3 solution was 
applied in this study. During each application, fertilizer was weighed, 
mixed with 2 L of water, and applied monthly onto the soils of each 
plot by using a backpack sprayer at the end of each month from May 
2011 to September 2014. Two passes were developed across each 
plot to ensure an even distribution of fertilizer. The control plots 
received 2 L of deionized water without N addition. Throughout the 
experiment, weeds were removed regularly. There were no significant 
differences in the physical and chemical properties of soils used to 
grow these saplings at the beginning of the experiment.

Sample collection and analysis: Biogenic carbonyl emission 
samples were collected during the wet season (July-August 2013) 
and the dry season (January 2014). For each sapling, samples were 
collected from a single branch. A dynamic enclosure system was 
constructed using a 40 L (48.2 cm×54.5 cm) Tedlar bag modified 
to slide over target branches and that could be sealed around the 
branch with a transparent tape [34,35]. After careful installation to 
minimize any disturbance, the purged branch enclosure was allowed 
to equilibrate for 30 min before sampling. Carbonyls were sampled 
for 150 min (dry season) or 180 min (wet season) from 8:00-18:00 
by using 2, 4-dinitrophenylhydrazine (DNPH)-coated silica gel-
cartridges (Waters, USA) with flow rates of 0.8-1.1 L·min-1. In all, 
52 samples were collected by drawing the air through the cartridge 
by using a sampling pump (Thomas, USA). After sampling, each 
cartridge was wrapped in aluminum foil, resealed in aluminum foil, 
transported to the laboratory, and stored in the refrigerator before 
analysis. Temperature (T), photosynthetic active radiation (PAR), 
and relative humidity (RH) were monitored by the neighboring 
weather station within 20 meters. 

The sampled cartridges were gradually eluted with 2 mL 
acetonitrile (ACN) into a 2-mL volumetric flask and stored under 
refrigerated conditions until analysis. The samples were analyzed 
using high-performance liquid chromatography (HPLC; Waters 
2695) coupled to a UV detector (Waters 2996) and operated at 360 
nm. A 10-μL aliquot was injected into the HPLC system through an 
auto sampler. The analytical conditions were as follows: Agilent SB-
C18 reverse column (250 mm×4.6 mm×5μm); gradient mobile phase: 
60-70% ACN of water solution for 20 min, 70-100% ACN for 3 min, 
100% ACN for 4 min, 100-60% ACN for 1 min, and then 60% ACN 
for 5 min; mobile-phase flow rate: 1 mL·min-1. 

Biogenic carbonyl flux rates were calculated using the following 
equation:

 Fcarbonyls = Ccarbonyls × Q/W (1)

 Where Fcarbonyls is the flux rate in ng·g-1·h-1, Ccarbonyls is the measured 
chamber carbonyl concentration in µg·L-1, Q is the flow rate through 
the chamber to the cartridge in L·h-1, and W is the dry weight of the 
leaves in the chamber in grams. 

 Statistical analysis: Paired-samples t-test was performed in order 
to analyze the differences of carbonyls emissions from plants between 
the control and N100 treatment at the nursery. Pearson correlation 
was used to determine the association between carbonyl emission 
rates and environmental factors. All analyses were conducted using 
SPSS 13.0 for Windows. Statistically significant differences were set at 
P values of <0.05 unless otherwise stated. Mean values are expressed 
as ± 1 standard error of the mean.

Results
Meteorological conditions varied during the measurements 

between the dry and wet seasons (Table 1). In the wet season, 
temperature was higher than 30°C, RH was higher than 60%, and 
PAR was in the range of 850–1,000 µmol·m-2·s-1; however, in the 
dry season, their values reduced remarkably. RH had a significantly 
(P<0.01) negative correlation with temperature and PAR in the wet 
and dry seasons, respectively. 

The main carbonyl species emitted in considerable amounts 
by the leaves of O. pinnata and C. burmannii were acetaldehyde, 
formaldehyde, and acetone, with emission rates ranging from 
approximately 3.4 to 738 ng·g-1·h-1 in the wet season and 0 to 175 ng·g-

1·h-1 in the dry season (Figures 1 and 2). In three cases (O. pinnata, 
dry season, 2014, N100 treatment), acetone was deposited, whereas, 
at all other instances, carbonyls were emitted by the plants. For O. 
pinnata, acetaldehyde was the most abundant carbonyl species in 
the wet season, but formaldehyde was emitted in higher amounts in 
the dry season. Acetone emissions in O. pinnata were always lower 
(not exceeding 6%) than those of acetaldehyde and formaldehyde, 
especially in the dry season. Acetaldehyde, formaldehyde, and 
acetone emission rates in the control O. pinnata plants showed 
seasonal changes (Figure 1a, b, c), which were higher (450.7, 145.4, 
and 110.3 ng·g-1·h-1) in the wet season and lower (25.1, 87.3, and 1.6 
ng·g-1·h-1) in the dry season. N100 treatment further strengthened this 
trend, and the emission rates remained considerably less in the dry 
season at approximately 11.6, 44.0, and 0.2 ng·g-1·h-1 for acetaldehyde, 
formaldehyde, and acetone, respectively, accounting for 12-51% of 
the levels of the controls in the dry season. However, N100 treatment 
had no effect on the emissions (P>0.05) in the wet season (Figure 1). 
Similarly, in C. burmannii leaves, emissions of carbonyls were higher 
in the wet season than in the dry season, i.e., formaldehyde emission 
rates in the wet season were 31% higher and acetaldehyde and acetone 
emission rates were 95% higher than those in the control in the 
dry season. Further, N100 treatment did not considerably alter the 
seasonal emission pattern and also showed significant negative effects 
(P<0.01) only in the dry season (Figure 2). No significant difference 
was found in carbonyls emissions between the two tree species when 
responding to N deposition.

Correlation analyses showed that temperature, RH, and PAR had 
positive effects on the emissions of carbonyls both in C. burmannii 
and O. pinnata. In C. burmannii, temperature was a more important 
factor than RH and PAR; there were significant correlations between 
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temperature and formaldehyde and acetaldehyde emissions (P<0.01), 
but only marginal significant correlation between temperature and 
acetone emission (P=0.067). However, in O. pinnata, temperature, 
PAR, and RH had significant correlations with the emissions of 
formaldehyde, acetaldehyde, and acetone (P<0.05) except for a 
marginal significant correlation between RH and formaldehyde 
emissions (Table 2). Therefore, temperature was the key influencing 
factor for both C. burmannii and O. pinnata, whereas RH and PAR 
affected carbonyl emissions depending on tree species. 

Discussion
In the present field study, carbonyl emissions from the leaves 

of native tree saplings in South China in response to elevated N 
deposition were first investigated. The main carbonyls released into 
the atmosphere were acetaldehyde, formaldehyde, and acetone, as 
reported previously [12,34]. Other carbonyls (C4-C10 aldehydes) were 
not emitted at significant amounts by the sampled trees, especially in 
the dry season. Acetaldehyde dominated the carbonyl flux with the 
highest emission rates of 451 ± 72 ng·g-1·h-1 in O. pinnata and 422 ± 
78 ng·g-1·h-1 in C. burmannii in the wet season. The emission rates of 
formaldehyde and acetone were slightly lower than those reported 
in Populus fremontii [34,36] and Populus tremuloides [36], but 
were comparable with those reported in Quercus ilex [37], Quercus 
gambelii [36] and Cinnamomum camphora [38].

Carbonyls were emitted at significantly (P<0.05) higher rates 
during the wet season than during the dry season (Figures 1,2), 
suggested that plants allocate more carbon to carbonyls formation 
in the wet season compared to the dry season. In wet season, plants 
can use more N as nutrient to their growth under the condition of 
precipitation associated with the high heat compared to the dry 
season. Moreover, herbivory (referring to leaf damage by insects, 
mammals, and pathogens) positively correlating with rapid growth of 
plants [39] happens more frequently in wet season than in dry season. 
Coley and Borone [40] reported the highest and lowest herbivory rates 
in the wet and dry seasons, respectively. So plants can obtain carbon 
enough and allocate the assimilated carbon to biogenic carbonyls [41-
43] in wet season. Higher emissions of biogenic VOCs in wet season 
are also known be play important roles in overcoming these biotic 
stresses [4,44-46] and favor plant survival [46]. 

Decrease in carbonyl emission in the dry season suggested that 
plants lose less carbon via VOCs emissions and sequestrate more 
carbon in this season, which is in agreement with the findings in 
tropical forests that carbon can be gained in dry season, but not in 
wet season [43,47]. Considerably low emissions of carbonyls in the 
dry season also implied that no more carbon is required for plant 
defense in this season, and more assimilated carbon is allocated to 
maintain the growth and metabolism of plants. Therein the decrease 

Parameter Cinnamomum burmanni. Ormosia pinnata
Dry season Wet season Dry season Wet season

T (°C) 17 ± 4 32 ± 2 20 ± 3 33 ± 2
RH (%) 45 ± 12 63 ± 7 52 ± 10 62 ± 9
PAR (µmol·m-2·s-1) 634 ± 428 983 ± 513 463 ± 313 866 ± 476
T: Temperature; RH: Relative humidity; PAR: Photosynthetic active radiation

Table 1: Means (± standard deviation) of environmental factors.
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Figure 1: Effects of simulated N deposition on (a) acetaldehyde, (b) 
formaldehyde, and (c) acetone emissions of Ormosia pinnata. In the wet 
season of 2013 and the dry season of 2014, two measurements were 
conducted at the nursery on plants treated with simulated N deposition in 
DHSBR, China. White bars, control (without N addition); black bars, N100 
(10 g N·ha-1·y-1). Carbonyl emissions were determined after an adaptation 
time of 30 min by using the 2,4-dinitrophenylhydrazine-coated silica gel 
cartridge technique. Data are means (± standard error) of 6–9 samples 
each. Different letters over bars indicate statistically significant difference 
at P<0.05.
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Figure 2: Effects of two-year simulated N deposition on (a) acetaldehyde, 
(b) formaldehyde, and (c) acetone emissions of Cinnamomum burmanni. 
In the wet season of 2013 and the dry season of 2014, two measuring 
treatments were conducted at the nursery on plants treated with simulated 
N deposition in DHSBR, China. White bars, control (without N addition); 
black bars, N100 (10 g N·ha-1·y-1). Carbonyl emissions were determined 
after an adaptation time of 30 min by using the 2,4-dinitrophenylhydrazine-
coated silica gel cartridge technique. Data shown are means (± standard 
error) of 6 samples each. Different letters over bars indicate statistically 
significant difference at P<0.05.
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in carbonyl emissions during the dry season suggested that the 
variation in carbon allocation of plants responding to environmental 
changes is an important mechanism for their defense and survival. 

N100 treatment had significant negative effects on carbonyl 
emissions in the dry season (Figures 1,2), suggesting that N deposition 
enlarges the seasonal gap of the carbonyls emissions between the 
wet season and the dry season. This discrepancy was attributed 
to different responses of plant growth and carbon allocation to N 
addition between in wet season and in dry season. Plants exhibit 
good growth and do not change the pattern of their carbon allocation 
in the wet season when facing increased N deposition, because it is 
eligible for plants to uptake N under the condition of plenty moisture 
and light. However, in the dry season, plants cannot uptake the same 
quantity of N because of water scarcity, and even worse, N deposition 
becomes a stress for plant growth and forces plants to allocate more 
carbon to maintain growth and reduce carbon loss via biogenic 
VOCs emissions. The results further supported the speculation that N 
deposition depresses biogenic carbonyls emissions as a stress, e.g., in 
the dry season, and does not affect the emissions as a nutrient, e.g. in 
the wet season. A similar finding was reported in Quercus pubescens 
seedlings, which showed declined biogenic VOCs emission, but 
increased non-structural carbon (e.g., soluble sugar) storage under 
the severe drought condition [26]. Thus, the changes of biogenic 
VOCs emission indicated the direct response of plants to stress (e.g. 
N deposition), and suggested carbon allocation becomes a strategy of 
plants to adapt to the adverse environment. Moreover, the negative 
effects of N100 on biogenic carbonyls emissions in the dry season 
supported our previous conclusions that N deposition increases 
above-ground plant C pool [27] and carbon sequestration of tropical 
forests [48,49]. 

Temperature was an important factor that influenced carbonyls 
emissions from trees (Table 2); this was consistent with the findings 
of other studies [12,18,19,50]. The positive effect of temperature 
suggested that it might markedly stimulate carbonyls emissions 
during global warming, which could further influence atmospheric 
photochemical reaction and reduce carbon storage in plants. The 
impacts of RH and PAR on carbonyl emissions (Table 2) were similar 
to those reported by Cojocariu et al. In this study, the effects of the 
two factors differed between the two tree species. This could be 
because the leaves of C. burmannii had thin leathery blades, and those 
of O. pinnata had leathery blades; therefore, the leaves of the former 
species were more sensitive to the changes in RH and PAR.

Conclusions
Biogenic carbonyls emissions show marked seasonal changes 

with higher emissions in the wet season than in the dry season; 
moreover, the seasonal disparity can be strengthened by N deposition 
at the level of 100 kg N·ha-1·y-1 by depressing their emissions in the dry 
season. The results suggested that N deposition could induce plants 
to reallocate carbon and reduce carbon loss via biogenic carbonyls 

emissions during the dry season when as a limiting factor. Our 
findings are of particular significance for better understanding plant 
adaptation strategies as a form of carbon balance under elevated N 
deposition. 
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