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Abstract
Cellular prion protein (PrPC) represents a potential regulator 
of cellular immunity and has been confirmed to be an invasive 
receptor exploited by bacteria such as Brucella abortus to facilitate 
the infection in host cells. Up to now, there are few informations 
about the role of PrPC in virus replication in host cells. Porcine 
reproductive and respiratory syndrome virus (PRRSV), a single 
positive-stranded RNA virus, prefers to infect African green monkey 
kidney cell line MA-104 and its derivatives, such as Marc-145. We 
found that PrPC is expressed on the surfaces of Marc-145 cells and 
its expression profiles greatly changed after PRRSV incubation 
with these cells. PrPC expression reached the peak at 12 hrs after 
PRRSV inoculation and then decreased sharply to recover to the 
original status while CD163, a PRRSV receptor in Marc-145 cells, 
achieved the climax at 48 hrs after virus infection and then slowly 
lowered its expression level. Here, we firstly suggest that PRRSV 
infection has an influence on the expression of PrPC on the surfaces 
of Marc-145 cells and PrPC may be involved in PRRSV invasion of 
host cells.
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Introduction
 Cellular prion protein (PrPC) is a glycosylphosphatidylinostitol 

(GPI)-anchored glycoprotein concentrated in lipid rafts of the 
plasma membrane. PrPC is widely expressed in various of cells 
including haematopoietic stem cells and immune cells in addition 
to cells of the central nervous system [1]. PrPC plays a complex 
role in the regulation of cell signalling and protein trafficking. Post-
translational modification of the PrPC is intimately associated with 

the pathogenesis of prion disease, yet the normal function of the 
protein remains unclear [2-4] The highly conserved nature of PrPC 
during evolution suggests that it may serve as a link between innate 
and adaptive immunity [5]. PrPC has been proposed to represent a 
potential regulator of cellular immunity [6]. Accumulating evidence 
confirmed that many infectious agents and their toxins use GPI-
anchored proteins to gain entry into host cells [7]. PrPC binds 
a wide range of molecules [8] and its localization in the plasma 
membrane indicates a role in cellular interactions, such as 
adhesion, recognition, and ligand capture. PrPC can modulate 
phagocytosis and inflammatory response of cells [9]. Some 
results show that PrPC is a generalized, negative modulator of 
phagocytosis with down-regulation of the cellular phagocytic 
activity [6,10] . For example, PrPC knock-out mice showed more 
efficient phagocytosis of zymosan particles leading to acute 
peritonitis than wild-type mice [10]. However, other findings 
suggest that PrPC is a positive modulator of phagocytosis with 
enhancement of cellular phagocytic activity [11]. For example, the 
PrPC deficiency prevented the internalization and intracellular 
replication of Brucella abortus, with the result that phagosomes 
bearing the bacteria were targeted into the endocytic network [12]. 
In addition, PrPC was confirmed to promote brucella infection 
into intestinal M cells by serving as a major uptake receptor [13]. 

Porcine reproductive and respiratory syndrome virus (PRRSV) 
is the causative agent of porcine reproductive and respiratory 
syndrome (PRRS). PRRSV is an enveloped positive stranded RNA 
virus, belonging to the genus Arterivirus, the family Arteriviridae, the 
order Nidovirales [14]. Based on genetic differences, PRRSV has been 
divided into two major genotypes: the European and the American 
[15]. Gene sequence of PRRSV has much difference in different strains, 
especially, type I and type II, share only about 60 % genome [16] . The 
virus genome is approximately 15.4 kb in length, containing ten open 
reading frames (ORFs), designated ORF1a, ORF1b, ORF2a,ORF2b 
and ORFs 3 through 7, including ORF5a [17,18]. In China, the highly 
pathogenic North American PRRSV (HP-NA-PRRSV), characterized 
by a 30-amino-acid depletion in nonstructural protein 2 (NSP2), 
appeared and caused great economic losses for the swine industry 
since 2006 [19,20]. However, the pathogenesis of HP-NA-PRRSV is 
still unclear. 

PRRSV has a very restricted cell tropism for cells of the 
monocytic lineage, especially the differentiated macrophages. The 
primary target cells for PRRSV infection are the fully differentiated 
porcine alveolar macrophages (PAMs) [21]. In vitro condition, 
among non-macrophage cells, the MA-104 cell line derived from 
African green monkey kidney and its derivative including Marc-
145, were susceptible to PRRSV and were found to fully support 
PRRSV propagation because of the expression of PRRSV receptors 
[22,23]. To date, several important PRRSV receptors, such as heparin 
sulfate (HS), sialoadhesin (Sn), CD163, CD151 and vimentin, 
have been identified. These receptors play significant roles during 
PRRSV infection of cells since they can involve in the virus binding, 
internalization or uncoating [24,25]. CD163 was confirmed to be 
responsible for uncoating virus particles and releasing the viral 
genome after early adhesion during PRRSV infection [26]. Vimentin 
is thought to opsonize and endocytose PRRSV. 
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 To our knowledge, there are no reports about the role of PrPC 
in virus infection of host cells up to now. In this study, we firstly 
examined the expression of PrPC on Marc-145 cell surface and 
compared the expression profiles between PrPC and CD163 during 
PRRSV infection of these cells. Our date suggested that PRRSV 
infection impacts PrPC cell surface expression in Marc-145 and PrPC 
maybe plays an important role during PRRSV entry into the host 
cells. These results provide a new sight of the physiological function 
of PrPC related to virus infection.

Materials and Methods
Cells culture and reagents

Marc-145 cells were maintained in Dulbecco’s modified Eagle’s 
medium (DMEM) (Gibco, USA) containing 10% fetal bovine serum 
(Gibco, USA) and antibiotics (100U/ml penicillin and 100µg/
ml streptomycin), and grown at 37ºCin a humidified incubator 
containing 5% CO2. Anti PRRSV nucleocapsid monoclonal antibody 
(MAb) conjugated with fluorescein isothiocyanate (SR30-F) was 
obtained from Rural Technologies Inc (Brookings, SD). Anti 
prion protein MAb SAF32 was bought from Bertinpharma and 
MAb against CD163 was from AbD Serotech (Raleigh, NC). APC 
(Allophycocyanin) conjugated goat anti-mouse IgG antibody was 
from biolegand company. Isotype control MAb (IgG2b) of PrPC were 
used to evaluate levels of nonspecifics staing (biolegand company).

PRRSV culture and virus titration 

 A HP-NA-PRRSV strain, named QH-08, was isolated from a 
pig farm suffered from HP-NA-PRRSV outbreak in 2008 in Qinghai 
province, China and propagated in Marc-145 cells (The virus 
identification and the whole genome sequence will be published in the 
future). The 50% tissue culture infected dose (TCID50) assay was used 
to measure PRRSV titration. Marc-145 cells were seeded into 96-well 
plates 24 hrs before infection. Virus supernatants were diluted 10-
fold serially. Cells were inoculated by 100 µl/well of the serial diluted 
supernatants. Five days post-infection, TCID50 was determined by the 
Reed-Muench method.

PRRSV RNA extraction and cDNA synthesis

Total RNA was extracted from the collected QH-08 
supernatants. RNA concentration was analyzed using a NanoDrop 
spectrophotometer (NanoDrop, USA). cDNA was prepared using 
Reverse Transcriptase M-MLV kit (Invitrogen) according to the 
manufacturer’s instructions and stored at - 40? until further use. 

Quantitative Real-Time PCR (qPCR) of PRRSV, PrPC and 
CD163 

The fragments of PRRSV, PrPC and CD163 target genes were 
amplified by the following primer pairs: PrPC primers (forward 
5 ‘-atgaagcacatggctggtgc-3’; reverse 5‘-ctgatccacaggcctgtagtaca-
3’),CD163 primers (forward 5’-atgggctaattccagtgcag-3’; reverse5’-
gatccatctgagcaagtcactcca-3’) and PRRSV primers (forward5’-
aaccacgcatttgtcgtc-3’; reverse 5’-tggcacagctgattgactgg-3’). The 
amplified gene fragments were inserted into pMD18-T vector. Then 
the corresponding recombinant plasmids were constructed and used 
to establish the standard curve after quantification. Reactions were 
run on Stratagene Mx3005P thermocycler. The threshold cycle (Ct) 
values were determined at the fluorescence threshold line and the Ct 
value of each sample was obtained by calculating the arithmetic mean 
of the triplicate values.

Flow cytometry analysis of the expression of PrPC and 
CD163 and PRRSV infection in Marc-145 cells 

Flow cytometry analysis was performed to measure the expression 
level changes of PrPC and CD163 with PRRSV infection of Marc-145. 
The cells were inoculated with QH-08 at a MOI of 0.1 and collected at 
different time points for flow cytometry analysis as described below. 
The collected cells were fixed with a 4% paraformaldehyde solution 
for 1 hr on ice and kept at 4oC for further use after washing with PBS. 
For PrPC or CD163 cell surface expression detection, then the cells 
were incubated with corresponding MAb in PBS with 1 % BSA at 
4 for 1 hr. 100 µl MAb SAF32 for PrPC detection or CD163 MAb 
was added at the final concentration of 2 µg/ml. After the incubation, 
APC conjugated anti-mouse IgG antibody was added and incubated 
with cells for 1 hr at 4oC. As for intracellular PRRSV detection, 100 
µl SR30-F was added and incubated with Marc-145 after cells were 
pretreated with BD Cytofix/Cytoperm Fixation/Permeabilization Kit 
following the handbook instruction. Isotype control MAb were used 
to evaluate the levels of nonspecifics staining.

Statistical analysis 

 All experiments were done with at least three independent 
experiments and statistical analyses were performed by GraphPad 
Prism (GraphPad Software, Inc., San Diego, CA, USA). Data were 
expressed as the mean ± standard deviation (SD). A value of P<0.05 
was considered as statistically significant.

Results
Effects of PRRSV infection on PrPC expression 

PrPC expression in Marc-145 cells infected by PRRSV was 
analyzed by flow cytometry. Surface PrPC expression was measured 
using MAb SAF-32 and APC-labeled antibody, and virus replication 
in individual cells was detected by the presence of FITC. For control 
Marc-145 cells, only 10% cells were PrPC positive (Figure 1E and 
Figure 2C). After virus infection, over 30% of Marc-145 cells were 
PrPC positive at 12 hr. While at 36 hr, 48 hr, 60 hr and 72 hr, the 
percentage of the positive cells returned to 10% (Figure 1E and 
Figure 2C). In qPCR assay, there was an increase in Prnp mRNA 
from Marc-145 cells. Prnp expression was 2-fold higher after 12 hrs 
infection compared with the uninfected cells (Figure 1F). qPCR assay 
along with the flow cytometry results , confirmed that surface PrPC 

expression levels reached the peak at 12 hr after PRRSV inoculation 
(Figure 1E and Figure 2C). 

CD163 expression correlates with PRRSV infectivity in 
Marc-145 cells 

 PRRSV replication and CD163 expression in Marc-145 cells 
during virus infection were measured by flow cytometry assay. For 
these experiments, CD163 surface expression was measured using 
APC-labeled antibody, and virus replication in individual cells was 
detected by the presence of FITC. Infected cells were collected at 
different times after incubation 1 hr of virus at MOI=0.1, and flow 
cytometry was performed prior to lysis of infected cells. For Marc-145 
cells , a majority of cells expressed high levels of CD163 from 0 hr to 
72 hr (Figure 1C and Figure 2A). At day 1, over 50% of Marc-145 cells 
were CD163 positive. By 36 hr, 48 hr, 60 hr and 72 hr, the percentage 
of CD163 positive cells increased to more than 60% (Figure 1C and 
Figure 2A). While there were few PRRSVs in Marc-145 cells at day 
1, over 20% of cells were PRRSV positive when the viruses were 
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Figure 1:   Effect of PRRSV infection time on CD163 and surface PrPC expression. Marc-145 cells were cultured for the indicated time; all data were presented 
as the mean ± standard deviation (SD). p value less than 0.05 was considered statistically significant correlation. Experiments were replicated three times using 
independent samples at each time point. (C and D) *Significantly enhanced when compare to other time points (P﹤0.05). (A and B) *Significantly enhanced when 
compare to 0 h, 12 h, 24 h, 36 h (P﹤0.05). (E and F) *Significantly enhanced when compare to other time points (P﹤0.05). 
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Fig. 2. The flow cytometry results of PRRSV (column B), CD163 (column A) and PrPC 
different time points.  
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Figure 2: The flow cytometry results of PRRSV (column B), CD163 (column A) and PrPC (column C)at different time points.
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level at 12 hr while the highest expression of CD163 was at 48 hr 
after PRRSV inoculation in Marc-145 cells. PrPC expression quickly 
restored to the level of naive situation from the peak while CD163 
expression level decrease slowly from the climax. The great differences 
of the expression profiles between PrPC and CD163 supported 
that PrPC and CD163 play roles in different process during PRRSV 
replication in Marc-145 cells. It was reported that CD163 is involved 
in uncoating of PRRSV particles, but not internalization. Our results 
were well in agreement with this conclusion because CD163 was 
found to increase its expression level at the late stage of PRRSV 
infection of Marc-145 cells. In comparison to CD163 expression 
profiles, PrPC expression began to largely increase at the early stage 
of PRRSV infection, indicating that PrPC is probably implicated in 
PRRV early infection process.

 To clarify the role of PrPC in PRRSV infection of host cells, 
more experiments including the influence of the deficiency and 
enhancement of PrPC expression level on PRRSV propagation 
need to be done. For example, knock-out PrPC gene or inhibiting 
PrPC expression by RNA interference or blocking its function via 
monoclonal antibody can be taken to down-regulate the function. In 
contrast, PrPC function can be up-regulated by introduction of PrPC 

gene into host cells. Here, our results provide a novel aspect of PrPC 
function in virus infection of host cells. It is worth to reveal PrPC 
roles in cellular immunity for better understanding the microbial 
pathogenesis. 

Conclusion
 It was the first report that PrPC has a role in PRRSV infection 

of host cells. PrPC possesses a distinct expression profile during 
PRRSV infection of Marc-145 cell in comparison with CD163 which 
is implicated in the uncoating process of the virus replication. PrPC 
appeared a peak at 12 hr after PRRSV inoculation in Marc-145 cells 

incubated in culture longer than 2 days (Figure 1A and Figure 2B). 
At 72 hr, PRRSV positive cells reached 25% (Figure 1A and Figure 
2B), and the majority of virus-infected Marc-145 cells were lysed 
(data not shown). The increased percentage of CD163 positive cells 
was not the result of the insufficient CD163 negative cells, since 
cell numbers remained relatively constant over the culture period. 
At the same time, qPCR was performed, results in accordance with 
flow cytometry (Figure 1B and D). These studies suggested that the 
overall expression levels of CD163 on Marc-145 cells may determine 
the levels of PRRSV replication and pathogenicity in vivo. It would 
be interesting to examine the expression levels of CD163 on the 
macrophages and the correlation with PRRSV infection.

The relationship of PRRSV, PrPC and CD163 

In qPCR and flow cytometry assay, PRRSV infection has 
influence on the expression of CD163 and surface PrPC in Marc-145 
cells (Figures 2 and 3). The trend of CD163 changes was consistent 
with PRRSV infection level from 12 hrs to 48 hrs. CD163 expression 
increased with PRRSV infection over time during this period. Then 
CD163 slowly lowered its expression and restored to the original 
level while PRRSV maintained stable infection (Figure 3 A and B). 
Comparison with the expression profile of CD163, PrPC possesses 
a distinctive model during PRRSV infection in Marc 145 cells. PrPC 
expression appeared a peak at 12 hr after PRRSV inoculation and 
then decreased sharply to recover to the original status (Figure 3 A 
and B). The results suggest that PrPC is maybe involved in the early 
stage of PRRSV infection of Marc-145 cells. 

Discussion 
PrPC, widely expressed on the surfaces of almost all kinds of cells 

[2,26], was confirmed to be present on Marc-145 cell surfaces by 
flow cytometry and real-time PCR in our study for the first time. The 
nonspecific staining was excluded by using Isotype negative control 
MAb. Marc-145 is derived from African green monkey kidney cell 
line MA-104 and serves as the preferable cells for PRRSV propagation 
in vitro for vaccine production while PAMs are the primary cells for 
PRRSV replication [27]. PRRSV infection of the host cells actually is a 
receptor-mediated endocytosis and replication process [28]. PRRSV 
receptors including HS [29], CD163 [30] CD151 [31] and vimentin 
[32] have been proved to be responsible for the virus entry into Marc-
145 cells. Sn, another PRRSV receptor restrictedly expressed on 
PAMs surface, is not expressed in MA-104 and its derivatives [33,34]. 
PrPC plays an important role in cellular immunity by modulating 
phagocytosis and inflammatory response of macrophages, influencing 
T cell activation and effector function or promoting immune cells 
recruitment in pathogen-causing infections [27,35] . Recently, PrPC 

was confirmed to promote brucella infection into intestinal M cells 
by serving as a major uptake receptor[9,12]. Therefore, it is very 
interesting to investigate the role of PrPC in virus infection of host 
cells because the related reports are hardly found until now. 

Our results showed that there is close relationship between PrPC 
expression and PRRSV infection in Marc-145 cells. PrPC expression 
level began to greatly increase and reached the peak at 12hr after 
PRRSV inoculation. Then, after virus infection of 12 hrs, PrPC level 
sharply decreased and restored to the original status quickly. The 
data demonstrated that PRRSV infection impacts PrPC expression on 
Marc-145 cell surface and also suggested that PrPC maybe takes a role 
in PRRSV replication in Marc-145 cells. 

 In this study, we also found that the expression profiles of PrPC 
are greatly different from that of CD163. PrPC peaked its expression 
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Figure 3: The relationship of PrPC, CD163 and PRRSV with the time. (A) 
The changed trend of PRRSV, PrPC and CD163 of flow cytometry results. 
(B) The changed trend of PRRSV, PrPC and CD163 of QPCR.
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and restored the original expression level in a short time. The results 
show that PrPC maybe plays a role in PRRSV early infection and more 
evidences are needed to support the novel conclusion. 
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