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Abstract

Background: Both prevailing air pollution or humidity levels
may influence the outcome of an acute hospital episode; we
investigated whether higher pollutant or humidity levels on the
day of a respiratory admission were associated with worse
outcomes.

Methods: Between 2002 and 2016, we studied all emergency
medical admissions (96,526 episodes in 50,731 patients) and
investigated air pollutant levels (sulphur dioxide) and humidity
levels on the day of admission. We employed a logistics
multiple variable regression model, to identify the extent to
which the prevailing pollutant or humidity levels influenced 30-
day hospital mortality outcome, stratified by respiratory or non-
respiratory type, having adjusted for other outcome predictors
including Acute Illness Severity and Case Co-morbidity/
Complexity.

Results: Respiratory admission were older-70.2 yr. (IQR: 55.0,
79.9) vs. 59.6 yr. (IQR: 39.1, 77.8], had a longer hospital length
of stay – 7.0 days (IQR: 3.4, 14.7] vs. 5.1 days (IQR: 1.9,
11.8%] and a higher 30-day hospital episode mortality – 7.9%
(95% CI: 7.7%, 8.2%] vs. 4.0% (95% CI: 3.8%, 4.2%]. The
pollutant level on the day of admission (SO2 quintiles)
predicted worsening outcomes from Q2 – OR 1.40 (95% CI:
1.21, 1.62) to Q5 – OR 2.57 (95% CI: 2.18, 3.03) with an
overall Odd Ratio for SO2 level of 1.27 (95% CI: 1.23, 1.32).
There was significant interaction between pollutant and
humidity levels and respiratory category. With saturated air
(humidity>95%), the predicted 30-day hospital mortality for SO2
quintiles Q3 and Q5 was 11.2% and 12.4% respectively but
with dry air (humidity<70%) the predicted mortality rose to
14.2% and 16.7% respectively. At any given humidity and
pollutant level, respiratory patients had worse outcomes.

Conclusion: Baseline air pollutant and humidity levels
influenced 30-day hospital mortality outcomes. At any given
levels, the outcome for respiratory patients was significantly
worse.
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Introduction
According to the World Health Organization (WHO) report in

2008, 1.3 million deaths were estimated to be related to ambient air
pollution globally. By 2012, this figure had nearly tripled to 3.7 million
[1]. Long-term ambient air pollution exposure has been associated
with an increase in all-cause mortality [1]. It is an etiological and
aggravating factor of many respiratory diseases such as chronic
obstructive pulmonary disease (COPD) [2,3], asthma [4], and lung
cancer [5,6]. Poor air quality also deleteriously impacts other organ
systems and is associated with cardiovascular [7,8], gastrointestinal [9]
and neurological diseases [10].

Concern raised regarding the public health implications of urban air
pollution in a paper from our institution [11] in Dublin resulted in
legislation in 1990 controlling the marketing, sale and distribution of
bituminous coals. The average black smoke concentration fell by
approximately 35.6 μg/m3 with an estimated reduction in respiratory
deaths by 15.5% and cardiovascular deaths by 10.3% [12].

Both temperature and humidity are also important determinants of
mortality. The humidity-mortality relationship is U-shaped and large
in magnitude at the extremes [13]. In the epidemiological literature
regarding the effects of humidity on health is difficult to interpret. This
is due to the fact that the effects of humidity are often inferred from
measurements that are directly linked to temperature (relative
humidity) or synoptic climatological analyses [14].

In general, water vapour status is linked to mortality and morbidity
through its role in affecting fluid homeostasis and thermoregulation
due to impaired surface evaporation rates with high humidity levels
and dehydration which could be worsened by dry weather conditions
[14]. Low humidity levels have been associated with increases in
COPD exacerbations [15] and bronchial hyper reactivity in asthmatic
patients [16]. Low absolute humidity was found to be a critical
determinant of human influenza mortality [17] and is thought to
trigger a variety of other respiratory tract infections [18]. Humidity
could also indirectly adversely impact respiratory disease via the
spread of bacteria, fungi, and dust mites [13]. Over the last 10 years
reports in the literature have also suggested that humidity may modify
the effects of air pollution on respiratory disease.

Our hospital serves an inner city catchment area with high levels of
social deprivation living in close proximity to severe motor traffic
congestion [19]. Car ownership levels in the area have increased
substantially in the last 5 years to levels proceeding the economic
recession of 2008-2014. In this study therefore we examined data
relating to 106,586 emergency medical admissions to St James’
Hospital, Dublin over a 16-year period (2002-2017) to evaluate how
ambient Sulphur Dioxide (SO2) concentrations and humidity levels on
the day of admission impact the 30-day mortality outcomes of acute
respiratory and non-respiratory admissions.

Methods

Background
St James’s Hospital, Dublin serves as a secondary care centre for

emergency admissions in a catchment area with a population of
270,000 adults. All emergency medical admissions were admitted from
the ED to an Acute Medical Admission Unit, the operation and
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outcome of which have been described elsewhere [20,21]. As a city
centre hospital St James’s admits person resident elsewhere but
working in the capital in addition to visitors to Dublin who became
acutely ill. The number of emergency medical admissions resident in
the catchment area was 74.5%; this compares with a figure of 59% for
emergency department presentations where the social influences on
emergency department visitations on two London hospitals have been
examined [22].

Data collection
An anonymous patient database was employed, collating core

information of clinical episodes from the Patient Administration
System (PAS), the national hospital in-patient enquiry (HIPE) scheme,
the patient electronic record, the emergency room and laboratory
systems. HIPE is a national database of coded discharge summaries
from acute public hospitals in Ireland [23,24]. International
Classification of Diseases, Ninth Revision, Clinical Modification
(ICD-9-CM) has been used for both diagnosis and procedure coding
from 1990 to 2005 with ICD-10-CM used since then. Data included
parameters such as the unique hospital number, admitting consultant,
date of birth, gender, area of residence, principal and up to nine
additional secondary diagnoses, principal and up to nine additional
secondary procedures, and admission and discharge dates. Additional
information cross-linked and automatically uploaded to the database
includes physiological, haematological and biochemical parameters.

Our hospital catchment area contains many small areas
characterised by a high deprivation status [19]. The Republic of Ireland
census (Central Statistical Office) report small area population
statistics (SAPS); the smallest reporting unit is the Electoral Division
(ED). Of the total of 3409, 74 Electoral Divisions are in the hospital
catchment area. The catchment area population, measured in 2006,
was 210,443 persons, with a median population per ED of 2845 (IQR
2020, 3399). Deprivation metrics have been determined by the Small
Areas Health Research Unit (SAHRU) of Trinity College Dublin using
methodology similar to Townsend [25] and Carstairs [26] to derive a
Deprivation Score based on four indicators, relating to unemployment,
social class, type of housing tenure and car ownership [27]. The
assignment of patients to small area population area used the ArcGS
Geographic Information System software implementation of the well-
known Point-in-Polygon algorithm as outlined by Shimrat [28].

Acute illness severity score
Derangement of biochemical parameters may be utilised to predict

clinical outcome. We derived an Acute Illness Score based on
laboratory data – this is an age adjusted 30-day inhospital mortality
risk estimator, representing an aggregrate laboratory score based on
the admission serum sodium (Na), serum potassium (K), serum urea,
red cell distribution width (RDW), white blood cell count (WCC),
serum albumin and troponin values at admission and applied as an
Acute Illness Severity score [29,30]; the score predicts 30-day in-
hospital mortality from the biochemical parameters recorded in the
Emergency Department [31]. The Illness Severity score can be
enhanced with data from the ICD9/10 discharge codes to compute Co-
Morbidity (as per the Charlson Index [32]) and chronic disabling
disease status [33]. This Risk Score is exponentially related to the 30-
day episodes mortality outcome with a range of model adjusted
mortality outcomes from 2.5% (2.3%– 2.6%) to 32.1% (30.4%-33.8%).
We have demonstrated using a nomogram that this laboratory models

derives most of its predictive power from the values of albumin, urea
and haemoglobin recorded at the time of admission [34].

Air quality
For the current study, data over the last decade (2002-2016) from

three stations within our hospital catchment area (Winetavern and
Coleraine Street or Rathmines stations) were assessed and hourly SO2
were recorded, according to methods detailed elsewhere [35]. A single
average value for each day was calculated for the analyses. We divided
the daily levels into equally spaced quintiles – SO2 quintile cut-points
were 0.93, 1.54, 2.32 and 4.14 µg/m3 respectively.

Statistical Methods
Descriptive statistics were calculated for demographic data,

including means/standard deviations (SD), medians/interquartile
ranges (IQR), or percentages. We examined 30-day in-hospital
mortality as the primary outcome. We performed comparisons
between categorical variables and 30-day in hospital mortality using
chi-square tests; multiple comparisons were adjusted for multiplicity
using Scheffe’s comparison statistic. Logistic regression analysis was
employed to examine significant outcome predictors (p<0.10 by Wald
test from the univariate analysis) of 30-day in hospital mortality to
ensure that the model included all variables with predictive power.
Adjusted Odds Ratios (OR) and 95% confidence intervals (CI) were
calculated for those significant model predictors. A stepwise logistic
regression analysis examined the association between 30-day mortality
and the following predictor variables: Acute Illness Severity [30,36,37],
Charlson Co-Morbidity Index [32], and Chronic Disabling Disease
[33], sepsis status [38] and Deprivation index according to the
Quintiles of the SAHRU deprivation number.

We used the margins command in Stata to estimate and interpret
adjusted predictions for sub-groups, while controlling for other
variables such as time, using computations of average marginal effects.
Margins are statistics calculated from predictions of a previously fitted
model at fixed values of some covariates and averaging or otherwise
over the remaining covariates. In the multiple variable logistic model
we adjusted univariate estimates of effect, using the previously
described outcome predictor variables. The model parameters were
stored; post-estimation intra-model and cross-model hypotheses could
thereby be tested.

Statistical significance at P<0.05 was assumed throughout. Stata v.15
(Stata Corporation, College Station, Texas) statistical software was
used for analysis.

Results

Patient demographics
A total of 96,526 episodes in 50,731 unique patients were admitted

as medical emergencies from the hospital catchment area over the 15-
year study period (2002-2016). These episodes represented all
emergency medical admissions, including patients admitted directly
into the Intensive Care Unit or High Dependency Unit, respectively.
The proportion of males was 48.6%. The median (IQR) length of stay
(LOS) was 4.4 (1.8, 8.9) days. The median (IQR) age was 58.7 (38.0,
76.2) yrs, with the upper 10% boundary at 84.9 yrs. (Table 1).

The demographic characteristics (Table 1) are outlined for with
comparison of the characteristics of respiratory and non-respiratory
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cases, by principal admission diagnosis. The characteristics are
tabulated by Acute Illness Severity [29,30], Chronic Disabling Score
[33], Charlson Co-morbidity Index [32] and Sepsis status [38]. In
terms of baseline characteristics, respiratory admissions were older
70.2 yr. (IQR: 55.0, 79.9) vs. 59.6 yr. (IQR: 39.1, 77.8], had a longer
hospital length of stay – 7.0 days (IQR: 3.4, 14.7] vs. 5.1 days (IQR: 1.9,
11.8%] and a higher 30-day hospital episode mortality – 7.9% (95% CI:
7.7%, 8.2%] vs. 4.0% (95% CI: 3.8%, 4.2%]. Respiratory admissions
were clearly at higher risk as evidenced higher levels of Acute Illness
Severity, Chronic Disabling Score, Charlson Co-morbidity Index and
Sepsis grade.

Other Respiratory

(N=58723) (N=37803) p-value

Age (yr)

Mean (SD) 58.03 (21.73) 66.17 (17.85) <0.001

Median (Q1, Q3) 59.6 (39.1,
77.6)

70.2 (55.0,
79.9) -

Length Stay (day)

Mean (SD) 13.74 (35.33) 16.43 (36.18) <0.001

Median (Q1, Q3) 5.1 (1.9, 11.8) 7.0 (3.4, 14.7) -

Gender   -

Male 28800 (49.2%) 18080 (47.9%) <0.001

Female 29789 (50.8%) 19636 (52.1%) -

30-day Hospital Mortality

Alive 56246 (96.0%) 34723 (92.1%) <0.001

Dead 2344 (4.0%) 2993 (7.9%) -

Illness Severity Score

1 2234 (4.2%) 313 (0.9%) <0.001

2 4844 (9.2%) 1070 (3.0%) -

3 7510 (14.2%) 2542 (7.2%) -

4 9080 (17.2%) 4787 (13.6%) -

5 9982 (18.9%) 7042 (19.9%) -

6 19132 (36.2%) 19545 (55.4%) -

Disabling Disease

0 8098 (13.8%) 1727 (4.6%) <0.001

1 15993 (27.3%) 7027 (18.6%) -

2 17806 (30.4%) 10180 (27.0%) -

3 11035 (18.8%) 10273 (27.2%) -

4 5658 (9.7%) 8509 (22.6%) -

Charlson Index

0 32705 (55.9%) 9922 (26.4%) <0.001

1 12501 (21.4%) 14104 (37.5%) -

2 13264 (22.7%) 13608 (36.2%) -

Sepsis Group

1 45421 (77.5%) 25520 (67.7%) <0.001

2 10764 (18.4%) 10260 (27.2%)  

3 2405 (4.1%) 1936 (5.1%)  

Table 1: Characteristics of respiratory medical admission episodes.

Temperature and Humidity Variation with Season
The median and range (IQR) for Humidity levels were 84% (78%,

91%) with respective 10 and 90 cent values at 54% and 91%. The
variation by season range from a maximum of 88% (83%, 91%) in
winter to a minimum of 80% (74%, 87%) in summer. Humidity cut-
points per quintile were at 77%, 82%, 86% and 91% values; high
humidity was taken to be at Q3 or above (>= 83%). The median
temperature was 11.1°C (7.2, 12.8) with respective 10 and 90 cent
values at 4.4°C and 15.2°C. The variation by season range from a
maximum of 17.3°C (15.2, 19.5) in summer to a minimum of 3.7°C
(1.8, 5.7) in winter.

Logistic multiple variable predictor model of air pollutant
level (SO2) humidity and their interaction of 30-day
mortality outcome

Both humidity and the air pollutant level on the day of admission
predicted the 30-day hospital mortality; higher levels of pollutant or
drier air predicted worse outcomes. The SO2 level on the day of
admission showed worsening outcomes with rising pollutant levels.
The median increase in pollutant levels was from Q2-0.59 μg/m3 (IQR:
0.31, 0.76) to Q3-1.87 μg/m3 (IQR: 1.70, 2.08) and Q5 – 5.90 μg/m3

(IQR: 5.00, 8.25). The 30-day hospital mortality risk increased from Q2
(comparisons with base QI level) – OR 1.40 (95% CI : 1.21, 1.62) to Q5
– OR 2.57 (95% CI : 2.18, 3.03) with an overall Odd Ratio for SO2 level
of 1.27 (95% CI : 1.23, 1.32) (Table 2, Figure 1).

Humidity had a weaker trend to predict worse outcomes as the level
of humidity fell; the interaction term between air pollution level, the
level of humidity and being a respiratory patient was significant (Table
2). Mortality was higher with drier air overall. We used margins
statistics to estimate and interpret adjusted predictions for sub-groups,
while controlling for other variables, using computations of average
marginal effects. We adjusted these predictors for other confirmed
outcome factors including the Acute Illness Severity, Chronic
Disabling Disease Score, Charlson Co-morbidity Index, and Sepsis
status. All of these variables were powerful 30-day mortality outcome
predictors-Acute Illness Severity OR 3.90 (95% CI: 3.58, 4.26),
Charlson Co-morbidity Index-OR 1.52 (95% CI: 1.43, 1.61), Chronic
Disabling Disease Score-OR 1.16 (95% CI: 1.11, 1.22), Sepsis Status-
OR 2.18 (95% CI: 2.04, 2.33) and Deprivation Index based on area of
residence-OR 1.08 (95% CI: 1.04, 1.13). A Respiratory Patient
classification was also a powerful (worse) outcome predictor OR 1.88
(95% CI: 1.61, 2.20).

The risk of a death by the 30-day of a hospital episode increased
essentially as a linear function of to the underlying SO2 Quintile at the
time of hospital admission (Figure 1). For example, when the air was
saturated (humidity>95%) the predicted mortality overall at the third
and fifth quintiles of SO2 were 11.2% and 12.4% but with lower
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humidity values between 50% and 70% would have risen to an
estimated 14.2% and 16.7% respectively.

Predictor
variable

Odds
ratio

Std.
Err. z P>|z| [95% Conf.

Interval]

SO2 Quintile       

QII 1.4 0.1 4.6 0 1.21 1.62

QIII 1.73 0.13 7.2 0 1.49 2.01

QIV 2.39 0.19 11 0 2.05 2.79

QV 2.57 0.22 11.2 0 2.18 3.03

Humidity Group       

>=70%<85% 1.26 0.15 1.9 0.05 1 1.61

>=85%<95% 1.28 0.17 1.9 0.06 0.99 1.65

>=95% 1.39 0.26 1.7 0.08 0.96 2.02

Illness Severity 3.9 0.17 30.6 0 3.58 4.26

Charlson Index 1.52 0.05 13.8 0 1.43 1.61

Disabling Group 1.16 0.03 6.3 0 1.11 1.22

Sepsis 2.18 0.07 22.7 0 2.04 2.33

Deprivation 1.08 0.02 4 0 1.04 1.13

Average Temp 0.98 0.01 -4.2 0 0.97 0.99

Respiratory 1.88 0.15 7.8 0 1.61 2.2

SO2 # Humidity 0.95 0.01 -3.8 0 0.92 0.97

Table 2: Multivariable logistic regression model of mortality outcome.

Logistic multiple variable predictor model interaction of
respiratory or non-respiratory status with air pollutant level
(SO2) and humidity interactions
There was significant interaction between Respiratory/Non-

Respiratory status, air pollution level (SO2) and humidity on day of
admission and 30-day mortality outcomes. Although admission day
level (SO2) and lower humidity levels linearly increased the risk of
adverse 30-day mortality outcomes, at any given level of pollutant
(quintile of SO2) of humidity category, the outcome for respiratory was
worse compared with non-respiratory patients (Figure 2). For example,
the predicted overall mortality at the highest quintile of SO2 Q5 with
humidity>95% for non-respiratory and respiratory was 12.5% (95% CI:
11.0%, 14.1%) and 14.9% (95% CI: 13.2%, 16.5%) respectively but with
very dry air (humidity<70%) mortality for the same quintile was much
higher predicted non-respiratory and respiratory 16.1% (95% CI:
14.3%, 18.0%) and 18.8% (95% CI: 16.9%, 20.7%) respectively (Table 2,
Figure 2).

Discussion
These data demonstrate that the level of humidity interacted with

the prevailing level of SO2 air pollution to influence the outcome of an
emergency medical admission. The predictive value was independent
of Acute Illness Severity, Chronic Disabling Disease Score, Charlson
Co-morbidity Index and Sepsis status. While mortality increased with

increasing SO2 concentrations at all humidity levels; drier air predicted
worse outcomes across the SO2 concentration quintile range. The SO2
cut-points were distribution determined with cut-points at 0.93, 1.54,
2.32 and 4.14 µg/m3 respectively; for humidity with a range of
50%-100%, we used mathematical cut-points of 50, 70, 85, and 95. But,
as clearly demonstrated in Figure 1, increasing levels of SO2 at time of
admission were associated with worse outcomes but the underlying
level of humidity worsened such outcomes (Figure 2).

Figure 1: The risk of a death by the 30-day of a hospital episode
increased essentially as a linear function of to the underlying SO2
Quintile at the time of hospital admission. The mortality outcome,
plotted against discrete Humidity levels was adjusted in the model
for Acute Illness Severity, Charlson Co-Morbidity Score, Chronic
Disabling and Sepsis Status. Lower admission humidity levels, at a
given pollutant quintile, independently predicted worse outcomes.

For example, at the third and fifth quintile of SO2, the predicted 30-
day per patient mortality at a humidity level of>95% was predicted
overall, irrespective of a respiratory or non-respiratory admission, at
11.2% and 12.4% but with lower humidity values between 50% and
70% would have risen to an estimated 14.2% and 16.7% respectively.
For respiratory patients, these values would have been 12.8% and
14.2% for the former and 16.1% and 18.8% for the latter.

The results of this study are consistent with reports in the literature
showing interactions between humidity and pollution driven
morbidity and mortality. For example, studies have demonstrated an
ameliorating effect of higher humidity on the impact of air pollution
on chronic bronchitis and emergency COPD admissions [39]. Two
large studies examining the effects of ambient particulate matter on
mortality in 29 cities across Europe showed that the impact of
pollution was higher in drier countries [40,41].

The impact of SO2 concentration on mortality outcomes was
disproportionately exerted on patients with a respiratory presentation.
A respiratory patient classification was a powerful predictor of
mortality across the SO2 quintile range. These results are consistent
with data from a large study examining mortality data from 38 large
Chinese cities which showed that the impact of particulate air
pollution on deaths from cardiorespiratory diseases was more than
twice as high as the effects on other cause mortality [42].
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SO2 is a known respiratory irritant and bronchoconstrictor, but its
effects seem limited to patients with asthma and bronchitis, although
sensitivity to exposure varies widely [43]. Exposure to SO2 gas has also
been shown to modulate autonomic function. Work by Tunnicliffe and
colleagues demonstrated changes in heart rate variability in humans
associated with exposure to SO2 (200 ppb for 1 h) [44]. This data is
supportive evidence for systemic effects of SO2 exposure resulting in
downstream effects on other organ systems.

Figure 2: The risk of a death by the 30-day of a hospital episode
increased essentially as a linear function of to the underlying SO2
Quintile at the time of hospital admission. Model adjusted
Humidity levels (>95% high;<70% low) predicted 30-day mortality
outcomes. Lower admission humidity levels, at a given pollutant
quintile, independently predicted worse outcomes with respiratory
patients having worse outcomes.

There is emerging evidence from the epidemiological literature of a
protective effect conferred by higher humidity on the harmful effects of
ambient air pollution on the airways. In fact, there are data that
demonstrate the potential of ambient temperature and relative
humidity to alter DNA methylation on genes related to coagulation,
inflammation, cortisol, and metabolic pathways [45]. Within the lung,
the relative humidity of inspired air must be approximately 95% for
optimal alveolar and small airway function. Levels below 95% would
result in excessive evaporation from mucosal surfaces and airway
dehydration, and levels closer to 100% would risk droplets
precipitation at lower temperatures [46]. Low environmental humidity
values may therefore create problems in individuals with underlying
airway disease or poor alveolar efficiency. More humid air may also
help reduce the number of inorganic salt molecules in ambient aerosols
when the level of solute deliquescence is surpassed [47].

As opposed to NO2 and various particulate pollutants, SO2 is a
water soluble gas which could explain its susceptibility to the effects of
ambient water vapour status as noted in this study. SO2 reacts with the
mucus layer of the upper airways while more soluble gases such as
NO2 are more likely to reach the alveoli [48]. SO2 may alter the
production and/or composition of mucus of the upper airway with
potential resultant effects on the ciliary epithelium. It is also possible
that gases such as SO2 may affect airway sensory cells resulting in
airway hyper reactivity and increased mucus secretion [48].

Our hospital catchment area is predominantly inner city, with over
50% of population classified as deprived [19]; 47 of the 74 Electoral
Divisions (small local areas) categorised in the top quintile of the
National Deprivation Index [49]. This deprived population of lower
socioeconomic status (SES) may typically suffer from higher air
pollution level exposure [50]. Lower SES has been also linked to
different pulmonary diseases including COPD, asthma, COPD and
pulmonary hypertension [51]. Presentations to our emergency services
with a predominant respiratory disease component represent 19.5% of
all emergency medical hospital episodes although they occur in only
9.6% of unique patients. This discrepancy in health care utilization is
likely in part attributed to higher levels of motor traffic pollution. We
previously described that in respect of respiratory admissions that SES
influenced both the admission rate incidence and 30-day in-hospital
mortality [52] and that air pollution on the day of admission
influenced 30-day mortality outcomes [53].

This study was conducted in a single inner city centre and this may
limit the generalizability of our results. Across the island of Ireland
pollutant profiles might vary considerably from one area to another.
Indeed legislation in place restricting the burning of soot producing
fuel for home heating in Dublin City does not apply to rural areas. This
may contribute to differences in particulate air pollution regionally.
Variation in volatile organic compound concentrations in rural and
urban may also be of significance in quantifying the humidity effect on
health outcomes given that water vapour interacts with VOC’s to form
harmful organic aerosols.

Conclusion
The data demonstrated an interaction between humidity and

prevailing levels of SO2 air pollution in an inner city area with high
levels of social deprivation and motor traffic congestion. The harmful
effects of SO2 pollution were higher among patients presenting with
respiratory disease than other presentations. Higher humidity levels
favorably influenced the outcome of these emergency medical
admissions across the SO2 ambient concentration range. The study was
based on a large database of clinical data spanning a 16 year period.
These results are supported by emerging epidemiological data linking
humidity to reduction in pollution driven morbidity and mortality.
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