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Abstract
The Simms constants (gi) are parameters of transformed equations 
for acid-base titration curves, obtained from rational functions 
of the Padé type. The relationships between gi and successive 
dissociation constants Ki values for polyprotic acids are formulated. 
The models related to acid-base titration curves are expressed in 
terms of hyperbolic functions. Some relations of gi to the Fermi-
Dirac distribution function are indicated. 
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Introduction
The term ‘Simms constants’ is an eponym related to virtual 

equilibrium constants (gi) suggested by Simms [1-5], known also as 
‘titration indices’ or ‘titration constants’ [6,7]. The gi were considered 
first in biological context [8-10], and later in a series of papers 
involved with titrimetric methods of analysis [11-15]. In particular, 
the gi concept can be applied in modeling the equilibria occurred 
in complex acid-base systems, where the isomolarity condition 
was fulfilled [16,17]. Later on, the Simms constants were applied to 
modeling of titration curves perceived from the viewpoint of total 
alkalinity (TAL) [18-20], also with fulvic acids (FA) involved [19]. The 
Simms can be considered [16-24] in context of rational functions of 
the Padé type [25], with activity h of H+1 ions as the variable. 

Application of the Simms constants enables any q-protic acid HnL 
(C0 mol/L), characterized by successive dissociation constants (Ki) 
values [10,16], to be considered as a mixture of q weak monoprotic 
acids HL(k) (k = 1, …,q) of the same concentration, i.e., C0 mol/L; the 
Simms constants gi are ascribed to these acids as (virtual) dissociation 
constants. The relations between gi and Ki values were formulated. 
Mathematical transformations made   for this purpose resemble the 
technique called as decomposition of rational functions into a sum 
of partial fractions, well-known to students during the course in 
mathematical analysis (integral calculus), see e.g. [26]. The Simms 
constants are involved in the partial fractions of this kind. 

In this paper, the Simms constants (gi) will be referred to D+T 
systems, with MmHn-mL (C0) + HB (Ca) + MOH (Cb) solution, called 
as the sample tested (ST), see Table 1. Depending on the pre-assumed 
composition of the species formed in a system, we consider first the 
more general case where complexes of MaHiBbL

+a+i-b-n type are formed; 
a, b = 0,1,…, i.e., the species HiL

+i-n (i=0,…,q) are also admitted here 
(at a=b=0). The D+T system where only the species HiL

+i-n (i=0,…, 
q) are formed, is considered as a particular case of the more complex 
system of the species. The interrelations where hyperbolic functions 
are involved with parameters of this simpler system, with dissociation 
constants (Ki) or stability constants of proto-complexes (Ki

H), known 
from tables of equilibrium data, are presented here. Stability constants 
of the mixed complexes are rarely met in literature; see e.g. [27-30].

Composition of titrand (D) and titrant (T) 
The D and T are prepared in volumetric flasks: F1 and F2, each 

with a volume of Vf  mL. First, equal volumes VST of a sample tested 
composed of MmHn-mL (C0) + HB (Ca) + MOH (Cb) are introduced 
into F1 and F2. In turn, VB mL of HB (C) or VM mL of MOH (C) is 
added into F1. Then  V*

MB mL of MB (CMB) is introduced into F1, and 
VMB mL of MB (CMB) is introduced into F2. The volumes V*

MB and VMB 
of MB fulfill the optional relations: 

*
MB MB MB MB B BC V C V C V⋅ = ⋅ + ⋅  or *

MB MB MB MB M MC V C V C V⋅ = ⋅ + ⋅                   (1)

(see Table 1). Both flasks are then supplemented with distilled 
water to the mark, and mixed thoroughly. 

The volume V0 mL (V0 ≤ Vf) is taken for analysis and titrated as 
D with T, added in portions; V mL is the total volume of T added 
from the beginning of the titration to a given point of the titration. 
The value

W = V0+V               (2)

is the total volume of D+T system, at a given point of titration.

Formulation of D+T system 
Denoting +a+i-b-nM H B L ] =ca i b aib[  for brevity, and applying the 

notations:
VSTd =
Vf

 ; CV VoBb =B Vf
 ;  = C – Cab∆ ;

ab 0J d ((n m) C= ⋅ − ⋅ − ∆       (3)

1 1[H ] [OH ]+ −α = −                (4)

aiba,i,b

0

i c
n

d C
⋅

=
⋅

∑                (5)

from addition of balances: 
1 1

aib
a,i,b

[M ] [B ] (a i b n) c 0+ −α + − + + − − ⋅ =∑

aib 0
a,i,b

n c d nC⋅ = ⋅∑

1 MB MB
aib a

a,i,b f

C V[B ] b c d C
V

− + ⋅ = ⋅ +∑

1MB MB B B
0 b aib

a,i,bf 0

C V b bd (mC C ) [M ] a c
V V W

+⋅
⋅ + + − + = + ⋅∑
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we get the relation
B B

0 0
0

b bF n d C d ((n m)C )
V W

= α + ⋅ ⋅ = ⋅ − − ∆ + −           (6)

(see Table 1). The relations for F in the systems 2 – 4 are obtained 
similarly. (Equation 6) can be transformed into the form

B B
0

b b d ((n m n) )
W W

 C= + ⋅ − − ⋅ − ∆ − α             (7)

Note that 

n m n (n m n) (q n) (q n m)− − = − + − = − − − +             (8)

where :
a i b n

1 iqa i b
a,i,b i 1 i

a i b n 1 iq
i 0a i b i

a,i,b

i [M H B L ]
k R [H ]n

[M H B L ] R [H ]

+ + − −
+

=
+ + − − +

=

⋅∑ ⋅ ⋅∑= =
⋅∑ ∑

             (9)

1 a 1 b
a,bi aibR K [M ] [B ]+ −= ⋅∑                (10)

a i b n 1 a 1 i 1 b n
aib a i b aibc [M H B L ] K [M ] [H ] [B ] [L ]+ + − − + + − −= = ⋅          (11)

Applying (8) in (7), we have

B B
0

0

b b d ((q n) (q n m ) C
W V

= + ⋅ − − − + + ∆ ⋅ − α           (12)

where [18-20,30,31]

( ) 1*q q q *pg phk k k
+1 *

k 1 k 1 k 1k k

g gq n 10 1
[H ] g h g

−
−

= = =
− = = = +∑ ∑ ∑

+ +
          (13) 

A Simpler System 
The simpler case is the system, where the species HiL

+i-n (i=0,…,q) 
are formed in the D+T mixture. These species can be characterized, 
optionally, by (successive) dissociation constants, Kj (j = 1,…,q):

Hq-j+1L
+q-j-n = Hq-jL

+q-j-1-n + H+1

+q-j-1-n+1H H Lq-jK =j +q-j-nH Lq-j+1

  
     

 
  

                             (14)

or by stability constants Ki
H of the related proto-complexes, HiL

+i-n,
1 n i n

iiH  L  H L+ − + −+ =

+i-nH LiHK =i +1 i -nL
 

[H ]

 
  

  

 (i = 1,...,q)                    (15)

Then we get the relations
1HK qi Kj q i 1 i

=
∏ = − +

 (i = 1,...,q)               (16)

Applying (15) in the relation 
n +i-ni.[H L ]ii=1n = n +i-n[H L ]ii=0

∑

∑

                (17)

we have
q H 1 ii K [H ]ii 1n q H 1 iK [H ]ii 0

+⋅∑
==

+∑
=

              (18)

The Simms constants gk are interrelated with successive 
dissociation constants Kj (Equation 14) of the acid HnL considered; 
we have a set of interrelations:

q

1 i
i 1

K g
=

= ∑ ; 
q 1 q

1 2 i j
i 1 j i 1

K K g g
−

= = +

⋅ = ⋅∑ ∑ ; 
q 2 q 1 q

1 2 3 i j k
i 1 j i 1 k j 1

K K K g g g
− −

= = + = +

⋅ ⋅ = ⋅ ⋅∑ ∑ ∑ ; … ; 

1 2 q 1 2 qK K ... K g g ... g⋅ ⋅ ⋅ = ⋅ ⋅ ⋅              (19)

The expression for 
k

Kii 1
∏
=

 (in Equations 19), formulated for 

q-protic acid, is a sum involving

( )
q!q

= 
k k! q - k !

 
 
 

                                 (20)

components [19] formed from k different gi values. In particular, for 
H3PO4 (acid of H3L type, q=n=3): 

at k=1 we have  
3
1

 
 
 

 = 3, K1 = g1+g2+g3; 

at k=2 we have  
3
2

 
 
 

 = 3, K1∙K2 = g1∙g2+g1∙g3+g2∙g3; 

at k=3 we have 
3
3

 
 
 

 = 1, K1∙K2∙K3 = g1∙g2∙g3. 

Table 1: Composition of titrand (D) and titrant (T) for different isomolar systems and the related expressions for F (Eq. 6); W = V0+V.

System no.
ST HB (CB) MOH (CM) MB (CMB)

F
D T D T D T D T

1 VST VST – VB – – VMB V*MB
B B

ab
0

b b
d J

V W
⋅ + −

2 VST VST VB – – – V*MB VMB
B

ab
b

d J
W

⋅ +

3 VST VST – – – VM VMB V*MB
M M

ab
0

b b
d J

V W
⋅ − +

4 VST VST – – VM – V*MB V*MB
M

ab
b

d J
W

⋅ −
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Generalizing, the binomial coefficient  
q
k

 
 
 

 [31] (Equation 20) 

expresses the number of distinct k-element subsets, formed from a set 
containing q different elements [32], as in the Pascal’s triangle [33].

The gi values can be calculated, provided that Ki
H (Equation 16) 

or Ki (Equation 14) values are known beforehand. Such calculations 
can be done with use of the iterative computer programs [34], as one 
specified in [19]. In particular, 

•	 for H2CO3 (q = 2): pK1 = 6.3, pK2 = 10.1, we have: pg1 = 
6.300069, pg2 = 10.099931; 

•	 for H3PO4 (q = 3): pK1 = 2.1, pK2 = 7.2, pK3 = 12.3, we have: 
pg1 = 2.100003, pg2 = 7.200000, pg3 = 12.299997.

As we see, pgi ≈ pKi values are here not distant from values. The 
differences | pgi – pKi | are greater when pKi values for a polyprotic 
acid   are closer to each other. 

For comparative purposes, we consider V0 mL of titrand D 
containing a mixture of q weak monoprotic (qk=nk=1) acids HL(k) 
(C0k; k=1,…,q), titrated with V mL of (a) HB (C) or (b) MOH (C) as 
T, we get the equations:

1 ](k)
1 +1

(k)

K[L 1(k)1- n = =k [HL ] +[L ] [H ] + K(k) 1(k)

−

−            (21)

and then
* *1(k) 1(k)

*
1(k)

+1

-1 -1K pK -pHq q q q qK1(k) pK -ph1(k)(1-n ) = = = 10 +1 = 10 +1k h + K[H ]+ Kk=1 k=1 k=1 k=1 k=11(k)

          
∑ ∑ ∑ ∑ ∑  (22)

where: [H+1][L(k)
-1] = K1(k)∙[HL(k)]; K1(k)

* = γ∙K1(k) – the related hybrid 
dissociation constants, pK1(k) = – logK1(k), pK1(k)

* = – logK1(k)
*. Then 

we have
*
k

*
k

+1

+1 +1

-1q q q qg [H ] h ph-pgkn = q - = = = 10 +1h +g[H ]+g [H ]+gk=1 k=1 k=1 k=1k k

 
 
 

∑ ∑ ∑ ∑     (23)

The Relative Contents of the Components Constituting 
D and T

The D and T include sample tested, ST (Table 1). If 
a,i,bMB aibC c>> ∑ then [M+1] and [B-1] values are practically constant 

during the titration. Moreover, we assume B B MB MBC V C V⋅ << ⋅ . Similar 
composition of D and T guarantees the stability of ionic strength of 
the solution. The relative permittivity ε is also kept constant if the D 
and T compositions are similar; it makes also the volumes additivity 
more accurate than when mixing various aqueous solutions. Then the 
isomolarity condition (Equation 1) enables to keep approximately 
constant values of the equilibrium constants, under isothermal 
conditions.

Therefore, the values of Ri (in Equation 10) or Ki (in Equation 18) 
are practically constant during the titration carried out under such 
conditions. The hydrogen ion activity coefficient = +1H

γ γ has also a 
stable value. The titration in isomolar systems makes it possible to 
determine +1H

γ  as one of the physicochemical parameters of the 

system, along with other equilibrium constants values [17]. 

Formulation in terms of Hyperbolic Functions
The related formulas can be expressed in terms of hyperbolic 

functions [35]. For this purpose, we denote: z = ln10∙pH, w = 
ln10∙pKW, sk = log10∙pgk. Then applying the identity

t -t t1 e - e e 11+ = =  t -t t -t -2t2 e + e e + e 1+ e
⋅
 
  
 

                                  (24)

we get:

w- w2= 2 e - z
2

sinh⋅
 
 
 

α ⋅                                (25)

+1

g z - s1k k= 1+
2 2H + gk

tanh⋅
  
         

                                (26)

From Equation 8, 13, 26 we have
q z s1 qkn m (m n)

2 2 2k 1
n tanh⋅

 
  
 

−
− − = − + −∑

=
                            (27)

The formulas involved with ph and gk
* look alike. From Equations: 

12, 13, 25 and 26, for C0k = C0, we get
wqC z sb b q w0B B k 2= +d (m n) C 2 e z0W V 2 2 2 2k 10

tanh sinh⋅ ⋅
              

−−
⋅ − + − ⋅ − ∆ − ⋅ −∑

=
    (28)

The hyperbolic functions can also be applied to more complex 
acid-base systems, discussed in [18-20,37].

Rational Functions
The general form of a rational function of variable x [37], y = y(x), 

is the quotient of polynomials p(x) and q(x), i.e.

( )
n i

ii 0
m j

jj 0

a xp(x)y y x;n,m  
q(x) b x

=

=

= = = ∑
∑

             (29)

where m ≥ 1, i.e., the denominator q(x) involves explicitly the variable x. 

The titration curves related to isomolar systems can be presented 
in the form of rational functions of the Padé type [16,17, 20-24]. For 
example, for the mixture HL (C0) + HB (Ca) applied as ST in the 
system 3, we obtain the function

2
2 4

2 3
1 3 5

A h A h
W

A A h A h h
⋅ + ⋅

= −
+ ⋅ + ⋅ −

                              (30)

where: A1 = ∙ KW∙x0γ
3 ; A2 = bM∙x0∙γ

2 ; A3 = (KW + d∙(C0 + Ca – aM/
V0)∙x0)∙γ2; A4 = bM∙γ ; A5 = (d∙(Ca – aM/V0) – x0)∙γ, aM = bM/d; x0 = 1/
K1, where [H+1][L-1] = K1∙[HL]; the activity of hydrogen ions, x = h, is 
the variable in Eq. 30. 

Special cases of rational functions are Möbius transformations 
[38]. The rational functions were also applied in different methods of 
chemical analysis, namely: in modified Gran methods of titrimetric 
analyses [39-43], for calibration curve, and standard addition 
methods [44-47].

Acid-base Micro-Equilibria as Emanation of Stochastic 
Processes

On the basis of formulation with the Simms constants involved 
one can state that the dissociation of H+1 from different protonation 
sites/centers proceeds independently, and the proton uptake/
dissociation from/to these sites (basicity centers) can be perceived 
as a stochastic process, categorized in terms of a success/failure. The 
degree of dissociation HL(k) = H+1 + L(k)

-1 from the k-th site is 

k kk k pg pH (pg pH)
1 1(pH)

10 1 e 1− β⋅ −α = α = =
+ +

             (31)

where β = ln10. The αi = αi(pH) fulfills the properties of cumulative 
distribution function
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lim (pH) 0i
pH

α =
→−∞

, lim (pH) 1i
pH

α =
→∞

, (pH) f (x) dx
pH

i iα = ⋅

−∞
∫          (32)

where y = fi(pH) is the probability density function

d (pH)f (pH)
dpH
ii

α
=             (33)

It implies that [19] 

i

i

10f (pH) (pH) (1 (pH))
(10 1)

pg pH
i i ipg pH 2

= β ⋅ = β ⋅ α ⋅ − α
+

−

−          (34)

The function (34) plotted in Figure 1 appears some similarities 
with the Fermi-Dirac distribution function [48]. 

Final Comments
The paper presents formulation of acid-base titration curves 

of different degree of complexity, for the D+T systems prepared 
according to unconventional mode, where D and T are prepared in 
accordance with the principle of isomolar solutions, suggested and 
formulated first time in the papers [16,17,21-24]. This procedure, 
where D and T have similar composition, secures constancy of 
equilibrium constants, activity coefficient of H+1 ions, and relative 
permittivity of D+T system during the titration performed under 
isothermal conditions. 

Assuming formation of the species of (i) HiL
+i-n or (ii) MaHiBbL

+a+i-

b-n type (i = 0,…,q) formed by an acid HnL in the system where the 
species M+1 and B-1 are also involved, the relations involving the mean 
number of protons, n  (Eq. 9 or 18) attached to the basic form L-n and 
the Simms constants gk were formulated. The partial ratios involved 
with gk were expressed in terms of the hyperbolic tangent (tanh) 
functions. The α (Eq. 4) was expressed in terms of hyperbolic sine 
(sinh). The partial ratios (Eq. 26) have the form (Eq. 34) similar to the 
one related to the density function in the Fermi-Dirac distribution 
function. Moreover, in [49], the inverse hyperbolic function argsinh 
[50] was applied for titration curve related to argentometric titration, 
and inverse hyperbolic function argcosh [50] as applied [28-30,52] for 
other titrations. 

It were also proved that the titration of HnL (C0) with MOH is 
equivalent to titration of the mixture of q monoprotic acids, HL(i) (C0), 
with the related dissociation constants [ ] ] [( ) (k 1k k k)[g  K  H L / HL= = . In 
other words, application of Simms constants principle provides a kind 

of ‘homogenization’, where polyprotic acids are transformed into the 
mixture of monoprotic acids. It is a very important property, especially 
advantageous when considered in context with titration of solutions 
whose composition and then acid-base properties are unknown 
a priori, e.g., fulvic acids. It particularly refers to determination of 
total alkalinity of natural (e.g. marine) waters, wastes and different 
beverages, made according to titrimetric mode (pH titration).
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