

Journal of Nuclear Energy Science & Power Generation Technology

A SCITECHNOL JOURNAL

The Study of Dimensional Flow of Particles and Calculation of Drag Coefficients under Different **Viscosity Fluids**

Rasmeet Singh1*

Research article

Department of Chemical Engineering & Technology, Dr. S.S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh 160014, India

*Correspondence to: Rasmeet Singh, Department of Chemical Engineering Technology, Dr. S.S. Bhatnagar niversity Institute of Chemical Engineering Technology, Pan ab niversity, Chandigarh 160014, India, Tel: 9988900108; E mail: srasmeet9 gmail.com

Received date: August, 24, 2021; Accepted date: November 18, 2021; Published date: November 29, 2021

Citation: Singh R, (2021) The Study of Dimensional Flow of Particles and Calculation of Drag Coefficients under Different Viscosity Fluids. J Nucl Ene Sci Power Generat Technol 10. 11

Abstract

An experimental study was conducted to find the drag coefficient of small spheres of diameter 5.0, 3.45, 5.7, 5.45, and 5.20 mm under ethylene glycol, castor oil, and glycerol. Six liquids with different viscosities and densities are used so as to explore a large range of Reynolds numbers. The tubes are divided into different zones of known length. Different spherical balls of various materials and diameters are taken to observe the drag coefficient. The materials of the spherical balls are made up of glass and steel. The setup also included a stopwatch to determine the time duration of various distance intervals, a measuring scale to measure the distance of the intervals on the cylindrical tubes, a screw gauge to note down the diameters of the various spherical balls, a thermometer to note down the temperature.

Keywords: Drag coefficient, Reynolds number, Fluid flow, Stokes law.

Introduction

While processing fluids via pipes and channels, a friction force shows to be a useful quantity. An analogous factor known as drag coefficient is utilized for immersed solids [1, 2]. It is defined as CD = (FD/ AP)/ puo2/2g [3].

Where,

FD is the total drag

uo is the free stream velocity

Ap is the projected area of the particle

Dp is the diameter of the particle

For a sphere, $Ap = (\pi/4) Dp2$

For particles other than spherical, it is necessary to specify size and geometric form of the object and its orientation with respect to the direction of the flow of the fluid.

For a cylinder so oriented that its axis is perpendicular to the flow, Ap is LDp.

For a cylinder with its axis parallel to the direction of the flow, Ap is $(\pi/4)$ Dp2.

From dimensional analysis, the drag coefficient of a smooth solid in an incompressible fluid depends upon a Reynolds number and necessary shape ratios. For a given shape,

 $C_D = \phi \times Re_p$ (1)

The movement of a particle through a fluid requires external force acting on the particle.

Three forces act on a particle moving through a fluid:

- · The external force
- · The buoyant force, which acts parallel with the external force but in opposite direction
- The drag force, which appears whenever there is relative motion between the particle and the fluid and it acts to oppose the motion and acts in direction opposite to that of the fluid.

Consider a particle of mass m moving through a fluid under the action of an external force Fe

U: velocity of the particle relative to the fluid

Fb: Buoyant force on the particle

FD: drag force

Then the resultant force on the particle is:

$$F_{e} - F_{D} - F_{B}$$
⁽²⁾

Therefore,

$$m\frac{du}{dt} = F_{\theta} - F_{D} - F_{B} \qquad (3)$$

The external force can be expressed as a product of the mass and the acceleration ae of the particle from this force

$$F_e = m \times a_e \tag{4}$$

The drag force is given by

$$F_D = \frac{C_D u_o^2 \rho A_p}{2}$$
(5)

The buoyant force is, by Archimedes' principle, the product of the mass of the fluid displaced by the particle and the acceleration from the external force and is given by

All articles published in Journal of Nuclear Energy Science & Power Generation Technology are the property of SciTechnol and is protected by copyright laws. Copyright © 2021, SciTechnol, All Rights Reserved.

$$F_B = \frac{m\rho a_e}{\rho_n} \tag{6}$$

Substituting equations 4, 5, 6 in equation 3

$$\frac{du}{dt} = a_{\theta} - \frac{\rho a_{\theta}}{\rho_p} - \frac{C_D u_0^2 \rho A_p}{2m} = a_{\theta} \frac{\rho_p - \rho}{\rho_p} - \frac{C_D u_0^2 \rho A_p}{2m}$$
(7)

At terminal velocity put $\frac{du}{dt} = 0$ and we get

$$u_t = \left(\frac{2g(\rho_p - \rho)\mathbf{m}}{A_p\rho_p C_D \rho}\right)^{0.5}$$
(8)

If the particles are spheres of diameter Dp

 $m = \frac{\pi}{6} \left(D_p^3 \times \rho_p \right) \tag{9}$

$$A_p = \frac{\pi}{4} \left(D_p^2 \right) \tag{10}$$

Using the above two equations in equation (7)

$$u_t = \left(\frac{4g(\rho_p - \rho)D_p}{3C_p\rho}\right)^{0.5} \tag{11}$$

Stokes' law:

At low Reynolds numbers, the drag coefficient varies inversely with Rep and the equations for CD, FD and ut are [3, 4]:

The above equation is a form of Stokes' law, which applies when the particle Reynolds number is less than 1.

$C_D = \frac{24}{Re_p}$	(12)
$F_D = 3\pi\mu u_t D_p$	(13)

Thus,

$$u_t = \frac{gD_p^2(\rho_p - \rho)}{18\mu} \tag{14}$$

The above equation is a form of Stokes' law, which applies when the particle Reynolds number is less than 1.

Newton's law:

Table 1: Properties of fluids.

For 1000<Rep<200000, the drag coefficient is approximately constant, and the equations are

$$C_D = 0.44$$
 (12)

$$F_D = 0.055\pi D_p (2u_t) 2\rho \tag{13}$$

Thus,

$$u_t = 1.75 \left(\frac{gD_p(\rho_p - \rho)}{\rho}\right)^{0.5}$$
(15)

The above equation is Newton's law and applies only for fairly large particles falling in gases or low viscous fluids.

From the equation given by Turton and Levenspiel:

$$\mathcal{C}_{D} = \frac{24}{N_{\text{Re}}} (1 + 0.173 N_{\text{Re}}^{0.657}) + \frac{0.413}{1 + \frac{16300}{N_{\text{Re}}^{1.09}}}$$
(16)

This equation defines the complete solid drag curve for $< 2^*$

Experimental Procedure

The temperature was noted down using a thermometer.

The viscosities and densities of six different liquids taken in cylindrical tubes were noted.

5 spherical balls of different sizes and material were taken and their diameter using screw gauge was noted.

Cylindrical tube was divided into different zones of known length having a static liquid.

A spherical ball of known diameter was dropped into the cylindrical tube, taking care that it does not touch the boundaries by dropping it almost from the middle of the tube.

The time of fall of each ball in each interval was noted carefully with the help of the bulb.

For each ball the reading was taken at least three times to reduce the error.

The same procedure was repeated for the remaining tubes.

Recordings

Density of Glass = 2600 kg/m3

Density of Steel = 7800 kg/m3

 Fluid
 Density (kg/m3)
 Viscosity (kg/m s)

 PIPE 1
 900
 0.2

 PIPE 2
 911
 0.084

Table 2: Specifications of balls used.

Ball	Name	Diameter (mm)
Big steel ball	S1	5
Medium steel ball	S2	3.45
Large Glass ball	G1	5.7
Medium glass ball	G2	5.45
Small glass ball	G3	5.2

Observations

 Table 3: Observation table for ethylene glycol.

Ball	t1 (sec)	t2 (sec)	t3 (sec)
	s1 = 0.297m	s2 = 0.316m	s3 = 0.279m
Small Glass Ball	0.88	1.14	1
	0.95	1.13	1.08
	1.14	1.17	1.2
Medium Steel Ball	0.12	0.37	0.61
	0.18	0.2	0.44
	0.18	0.45	0.28
	0.22	0.54	0.36
Small Steel Ball	0.4	0.41	0.16
	0.29	0.39	0.22
	0.2	0.41	0.38
	0.26	0.47	0.28
Large Glass Ball	0.86	1.1	0.72
	0.89	1.14	0.85
	0.73	0.84	0.88
	0.91	0.69	0.63

 Table 4: Observation table for castor oil.

Ball	t1	t2	t3
	s1 = 0.297m	s2= 0.316m	s3= 0.279m
Small Glass Ball	20.21	25.49	22.92
	21.59	24.21	22.64
	14.92	15.34	25.11
Medium Steel Ball	4.3	4.52	4.93
	4.46	4.99	6.36
	4.18	4.55	4.65
	4.2	4.32	4.59

Small Steel Ball	6.55	6.58	6.8
	6.43	6.63	6.07
	6.44	7.06	11.38
	6.43	6.7	7.26
Large Glass Ball	17.58	17.81	19.1
	17.36	18.8	20.8
	14.7	15.09	15.83
	20.71	22.54	23.68

Table 5: Observation table for glycerol.

Ball	t1	t2	t3	
	s1 = 0.297m	s2= 0.316m	s3= 0.279m	
Small Glass Ball	7.23	6.69	7.49	
	6.78	7.23	8.45	
	6.82	7.29	8.72	
Medium Steel Ball	1.38	1.58	1.48	
	1.41	1.45	1.69	
	1.54	1.32	1.85	
Small Steel Ball	1.98	2.07	2.49	
	1.79	2.08	2.48	
	1.83	2.16	2.46	
	4.22	5.03	5.47	
Large Glass Ball	3.99	4.34	4.93	
	4.95	5.22	5.97	

Calculations

Table 6: Calculations for ethylene glycol.

Ball	t1	t2	t3	v1	v2	v3	v average	Exp.	Re	Theo	CD,	CD,
	s1 = 0.297m	s2 = 0.316m	s3 = 0.279m					Termina I Velocity		Termina I Velocity	experi mental	theoreti cal
Smal I Glass	0.88	1.14	1	0.33 75	0.27 7193	0.27 9	0.29 7898	0.27 8602	6.74 0951	0.06 166	3.56 03286	5.71 83054
Ball	0.95	1.13	1.08	0.31 26316	0.27 9646	0.25 8333	0.28 3537					
	1.14	1.17	1.2	0.26 05263	0.27 0085	0.23 25	0.25 4371					
Medi um	0.12	0.37	0.61	2.47 5	0.85 4054	0.45 7377	1.26 2144	1.14 2446	31.9 0704	0.36 946	0.75 21851	2.01 92587
Steel Ball	0.18	0.2	0.44	1.65	1.58	0.63 4091	1.28 803					

	0.18	0.45	0.28	1.65	0.70 2222	0.99 6429	1.11 6217					
	0.22	0.54	0.36	1.35	0.58 5185	0.77 5	0.90 3395					
Smal I Steel	0.4	0.41	0.16	0.74 25	0.77 0732	1.74 375	1.08 5661	1.01 3381	22.4 1776	0.23	1.07 05798	2.50 02378
Ball	0.29	0.39	0.22	1.02 41379	0.81 0256	1.26 8182	1.03 4192					
	0.2	0.41	0.38	1.48 5	0.77 0732	0.73 4211	0.99 6647					
	0.26	0.47	0.28	1.14 23077	0.67 234	0.99 6429	0.93 7026					
Larg e Glass	0.86	1.1	0.72	0.34 53488	0.28 7273	0.38 75	0.34 0041	0.35 7212	10.6 6791	0.09 394	2.24 97388	4.09 35011
Ball	0.89	1.14	0.85	0.33 37079	0.27 7193	0.32 8235	0.31 3045	-				
	0.73	0.84	0.88	0.40 68493	0.37 619	0.31 7045	0.36 6695					
	0.91	0.69	0.63	0.32 63736	0.45 7971	0.44 2857	0.40 9067					

 Table 7: Calculations for castor oil.

Calculations for glycerol.

Ball	t1	t2	t3	v1	v2	v3	v	Exp. U	Re	Theo. U	CD,	CD, theoreti cal
	s1 = 0.297m		s3= 0.279m				average				experi mental	
Small Glass	20.21	25.49	22.92	0.01469 57	0.01239 7	0.01217 3	0.01308 8	0.01444 61	0.08377 5	0.01886 6	286.482 44	296.201 62
Ball	21.59	24.21	22.64	0.01375 64	0.01305 2	0.01232 3	0.01304 4					
	14.92	15.34	25.11	0.01990 62	0.0206	0.01111 1	0.01720 6					
Medium Steel	4.3	4.52	4.93	0.06906 98	0.06991 2	0.05659 2	0.06519 1	0.06454 25	0.37429 1	0.10488 8	64.1212 56	69.9375 62
Ball	4.46	4.99	6.36	0.06659 19	0.06332 7	0.04386 8	0.05792 9					
	4.18	4.55	4.65	0.07105 26	0.06945 1	0.06	0.06683 4					
	4.2	4.32	4.59	0.07071 43	0.07314 8	0.06078 4	0.06821 6					
Small Steel	6.55	6.58	6.8	0.04534 35	0.04802 4	0.04102 9	0.04479 9	0.04344 92	0.25196 8	0.06580 5	95.2502 17	101.912 09
Ball	6.43	6.63	6.07	0.04618 97	0.04766 2	0.04596 4	0.04660 5					
	6.44	7.06	11.38	0.04611 8	0.04475 9	0.02451 7	0.03846 5					
	6.43	6.7	7.26	0.04618 97	0.04716 4	0.03843	0.04392 8					
Large Glass	17.58	17.81	19.1	0.01689 42	0.01774 3	0.01460 7	0.01641 5	0.01629 06		0.02874 2	254.045 28	263.372 01
Ball	17.36	18.8	8.8 20.8 0.01710 0.01680 0.01341 0.01577 8.3 9 3 7									
	14.7	15.09	15.83	0.02020 41	0.02094 1	0.01762 5	0.01959					
	20.71	22.54	23.68	0.01434 09	0.01402	0.01178 2	0.01338 1					

Results

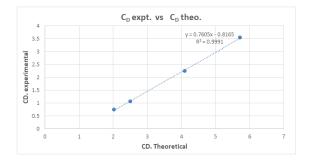


Figure 1: Plot of CD experimental versus CD theoretical.

Figure 2: Plot of CD experimental versus Reynolds number.

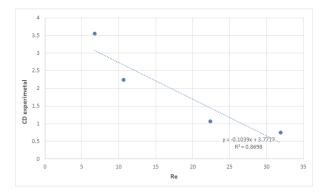


Figure 3: Plot of U theoretical versus U experimental.

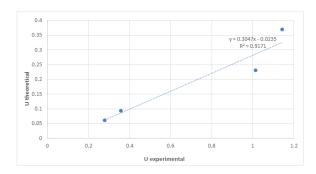


Figure 4: Plot of CD experimental versus CD theoretical.

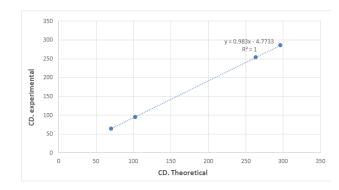


Figure 5: Plot of CD experimental versus Reynolds number.

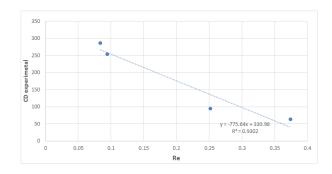


Figure 6: Plot of U theoretical versus U experimental.

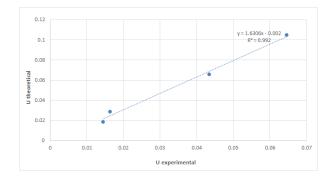


Figure 7: Plot of CD experimental versus CD theoretical.

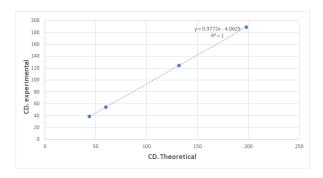


Figure 8: Plot of CD experimental versus Reynolds number.

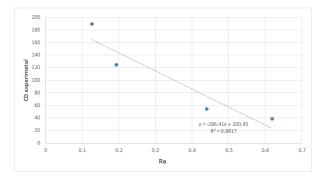
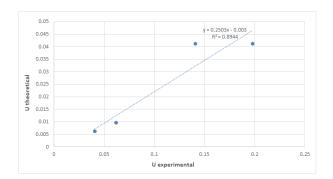



Figure 9: Plot of U theoretical versus U experimental.

Discussion of Result

From the experiment we studied the nature of different fluids of different densities and viscosities. We saw the variation in drag coefficient by varying the Reynolds No. i.e. we used spherical balls of various materials as well as diameters. We saw there were quite discrepancies in the experimental and the theoretical plot of velocity and coefficient of drag vs Reynolds no. The discrepancies may be due to parallax, error in noting the time, wall effects, instrumental error due to screw gauge in measuring the diameter and human error might also have crept in due a large no. of people working at the same time.

References

- 1. Selberg BP, JA Nicholls (1968) "Drag coefficient of small spherical particles." AIAA Journal 6, no. 3: 401-408.
- Alam F, Steiner T, Chowdhury H, Moria H, Khan I, Aldawi F. and Subic A (2011) A study of golf ball aerodynamic drag. Procedia Engineering, 13, pp.226-231.
- McCabe, WL, Smith, JC. and Harriott, P (1993) Unit operations of chemical engineering 5, p.154. New York: McGraw-hill.
- Sutterby JL (1973) Falling sphere viscometry. I. Wall and inertial corrections to Stokes' law in long tubes. Transactions of the Society of Rheology, 17(4), pp.559-573.