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Abstract
We demonstrated topological-defect driven membrane fission 
mechanism using a simple phenomenological model. We modeled 
membranes as effectively two-dimensional systems possessing 
in-plane ordering. Membrane configurations were described in 
terms of tensor orientational order parameter and curvature tensor. 
For demonstrative purpose we considered only membranes 
exhibiting spherical topology with axial and inversion symmetry. 
Using Effective Topological Charge Cancellation mechanism 
we showed that topological defects tend to assemble in regions 
exhibiting relatively strong Gaussian curvature. In particular, neck-
like membrane parts exhibit negative Gaussian curvature, which 
attract topological defects bearing negative topological charge. 
In geometries of our interest these defects can be formed via 
{defect, antidefect} depinning mechanism. The assembled defects, 
localized near the neck, give rise to relatively strong fluctuations at 
microscopic level, promoting membrane fission. 
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Introduction
Biological membranes [1,2] present an essential constituent of 

living cells. Their main role is to separate the interior of a cell from its 
surrounding, allowing selective transfer of specific materials through 
it. Configurational changes in membranes are in general correlated 
with important biological processes. In most cases membranes 
are composed of lipid bilayers, forming different lyotropic liquid 
crystal structures. Membranes often display some kind of in-plane 
orientational ordering, which could occur due to anisotropic shape of 
basic membrane components. Orientational ordering might be also a 
consequence of attached or embedded anisotropic proteins or lipids 
[2]. Despite their complexity, several key features of membranes 
and their functionality could be inferred by studying relatively 
simple models. Minimal models treat membranes as effectively 
two-dimensional (2D) systems [1-5]. Namely, their thickness is in 
general negligible small with respect to system’s characteristic linear 
dimension in other directions. If a membrane possesses some kind 
of in-plane ordering, it might exhibit topological defects (TDs) [6,7]. 
The latter correspond to localized distortions in a relevant order 
parameter field and they cannot be removed by local continuous 
transformations. At their origin of TDs, the ordering field is melted. 

Presence of TDs might have a dramatic impact on systems properties. 
For example, TDs might present nucleating sites for anomalous 
membrane structural growth [8,9].    

In this contribution, we show that for appropriate conditions, TDs 
might enable fission of a membrane exhibiting in-plane ordering. To 
demonstrate this phenomenon, we use a simple mesoscopic minimal 
model, where we consider biological membranes possessing in-plane 
nematic-like ordering. Analogous systems represent nematic liquid 
crystalline shells in which configurations of TDs have been recently 
intensively studied due to their great potential for various future 
photonic applications [10-14]. The plan of the paper is as follows. 
In Sec. II we present theoretical background. Our minimal model is 
introduced in Sec. III. In Sec. IV we present defect-driven fission and 
in the last section we summarize the results of our study.

Theoretical background

Topological defects (TDs) represent points or lines where a 
relevant ordering field (which is in general introduced to describe 
configurations for relatively weak elastic distortions) exhibits singular 
behaviour [6,7]. TDs are characterised by a discrete topological 
charge, which is a conserved quantity. In 2D, the topological charge 
equals the winding number m  [15]. It determines the number of 
reorientations of the ordering field along a line encircling the defect’s 
centre [15]. For a nematic director field, which exhibits the head-to-tail 
invariance, it holds { }1/ 2, 1, 3 / 2m ∈ ± ± ± … . Assembling tendencies 
of TDs on surfaces exhibiting spatially nonhomogeneous Gaussian 
curvature K can be well predicted by the Effective Topological 
Charge Cancellation (ETCC) mechanism [16]. One characterizes 
each surface patch ζ∆  by its average characteristic Gaussian 
curvature

1 2K Kd r
ζ ζ

=
∆ ∆


∬                    (1)

To each patch, we assign the effective topological charge [16]:

km m meff∆ = ∆ + ∆                  (2)

It consists of the topological charge ∆m of “real” TDs and the 
spread curvature topological charge [17,18], which is defined as

21
2Km Kd r

ζπ ∆
∆ = − ∫∫

                   (3)

Therefore, 0K >  ( 0)K <  refers to a negative (positive) spread 
curvature topological charge. The ETCC mechanism claims [16] that 
in each surface patch, there is a neutralization tendency to cancel

effm∆ . Surface patches exhibiting 0effm∆ = are claimed to be 
topologically neutral. In general it could hold that 0effm∆ ≠ . In such 
cases, topological neutrality could be achieved either by redistribution 
of the existing TDs or via the creation of pairs {defect, antidefect}.

Model

We consider 2D films exhibiting in-plane ordering. We set that 
orientational ordering is due to rod-like molecules constituting 
the film. We assume that rod-like molecules lie in the local tangent 
plane of a curved surface. Their local average mesoscopic orientation 
is determined by the so called [7] nematic director field n , where

1n =


. The director field exhibits head-to-tail invariance (states n±
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are physically equivalent). Such configurations can be represented by 
the tensor order parameter [14,19]

( )Q n n n nλ ⊥ ⊥= ⊗ − ⊗
   

                  (4)

The amplitude [ ]1/ 2,1 / 2λ ∈ −  quantifies the degree of orientational 
ordering. Therefore, the absence of ordering corresponds to λ=0. 
Curvature of a local surface patch, characterised by the surface 
normal v , is determined by the curvature tensor [14,19].

1 1 1 2 2 2C C e e C e e= ⊗ + ⊗
   

                 (5)

The unit vectors { }1 2, e e
 

 point along the surface principal 
directions exhibiting principal curvatures 1 2{ , }C C . Note that the 

Gaussian curvature 1 2K C C= and the mean curvature ( )1 2
1
2

H C C= +  

are invariants of C :  K Det C=  and 
1   
2

H Tr C= . Here Det and 
Q  label the determinant and trace mathematical operation. Using 
invariants formed by Q  and Q , we express the free energy density 

b c ef f f f= + + , where we take into account only the most important 
contributions. Quantities fb,  fc and fe stand for the membrane bending, 
condensation and elastic term, respectively. They are expressed as 
[1,14,16,19].
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Here 0κ >  is a representative membrane bending constant 
favouring flat geometry. In the nematic phase, A and B are positive 
material constants, the elastic term is weighted with the positive 
elastic constant k , ( )s I v v∇ = − ⊗ ∇

 
 stands for the surface 

gradient operator and ∇ labels the 3D gradient operator [14,19]. Key 
material dependent length is given by the nematic order correlation 
length, which can be expressed as [14].

k
A

ξ =                    (7)

In simulations, we restrict to axial symmetric shapes exhibiting 
inversion symmetry. The shapes are in the Cartesian coordinates 
described using the parameterization [16].

( )cos( ) xr s eρ ϕ=


+ ( ) ( )sin( )  y zs e z s eρ ϕ +
  .               (8)

Here ρ and Z are variational parameters, s stands for the line 
element length and [0, 2 ]ϕ π∈ . We determine the configuration of a 
membrane by minimizing the total free energy for a fixed membrane 
surface and volume. Numerical details are described in [16].

Results
Below we demonstrate key stages of defect-driven membrane 

fission. We consider a membrane exhibiting spherical topology, 
possessing nematic in-plane ordering. Let us assume that it undergoes 
a shape transformation from a spherical-like shape to dumbbell-like 
shapes, which are shown in Figure 1b, 1c, 1d. In simulations, we 
enable this transformation by varying the relative volume 
v=V/V0. Here, V stands for the membrane’s volume, and V0 represents 
the volume of a spherical membrane of the same surface area. In 
a perfect sphere, the structure possesses four TDs, which reside in 
the vertices of a hypothetical embedded tetrahedron (Figure 1a) [10]. 

In Figure 2, structures are shown in the ( , )sϕ  plane where TDs 
are clearly visible. Namely, centres of defect cores are melted (λ=0) 
in order to avoid singularity in the elastic free energy penalty. In a 
sphere, the Gaussian curvature is spatially homogeneous and relative 
positions of TDs are dictated by repulsive interactions among TDs. A 
tetrahedron-type configuration maximizes their mutual separation.

On decreasing K, a dumbbell shape begins to form. The Gaussian 
curvature becomes spatially dependent; see Figure 3, giving rise to 
spatial redistribution of TDs. In the 1st stage, shown in Fig. 1b and Fig. 
2b, the TDs bearing positive topological charges begin to assemble at 
the spherical parts of the membrane. Within the neck of the structure, 
a region possessing negative K appears (Figure 3). The resulting 
structure can be viewed as consisting of three distinct surface patches. 

We label them as ζ(I) and ζ(III) (spherical parts of the structure in 

Figure 1b, c, d) and ζ(II) (the catenoid-like part of the structure in 

Figure 1b, 1c, 1d), characterised by ( )( ) ( )( )  0I IIIK Kζ ζ= >  and ( )( ) 0IIK ζ < , 

respectively (Figure 3). If four 1/ 2m =  TDs are present, finite effective 

topological charges appear in all three patches on decreasing v. For a 

Figure 1: (a) Orientational order on a spherical membrane exhibits 
four m=1/2 TDs due to topological requirements. From the perspective 
of ETCC mechanism, this structure is topologically neutral. Namely, 
the structure consists of only one curvature patch, within which the 
Gaussian curvature charge and the real charge exactly cancel each 
other. (b) Topologically charged dumbbell structure with four TDs. 
(c) Topologically charged dumbbell structure with eight TDs. (d) 
Topologically neutral dumbbell structures with twelve TDs. Ls represents 
the total length of the shape profile curve. The corresponding ordering is 
depicted in the ( , )sϕ  plane in Figures 2.
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Figure 2: Degree of orientational ordering in the 1v =  plane. (a) 1v = , four 0.80v ≈ TDs;  (b) 0.80v ≈ ,  four 0.74v ≈ TDs; (c) 0.74v ≈ , six 1/ 2m = −
and two 1/ 2m = − TDs; (d) 0.70v ≈ , eight 1/ 2m = − and four 1/ 2m = − TDs. / 30R ξ = , where ( )1/3

03 / (4 )R V π= .

Figure 3: Spatially dependent Gaussian curvature for structures shown in 
Figures 1 and 2.

pronounced dumbbell shape (consisting of two spheres connected 

by a thin neck) it roughly holds ( )( ) ( )( ) : 1I III
eff effm mζ ζ∆ = ∆ = −  and

( )( ) : 2II
effm ζ= ∆ = + . In order to neutralize these patches, one needs 

to introduce TDs of total topological charge 1m∆ =  in the patches
( ) ( ){ },I IIIζ ζ , and TDs of total topological charge 2m∆ = −  in ( )IIζ . 

This could be realized by depinning of four pairs {defect, antidefect}
{ 1/ 2, 1/ 2}m m= = = − . However, to form a pair, a large enough 

concentration of local elastic free energy is required, which should be 
comparable to the condensation penalty of forming the pair. Namely, 
the cores of TDs are essentially melted in order to avoid singularity in 
orientational ordering [16]. On decreasing v, this condition could be 
realised as it is demonstrated in Figure 1c. In the presented example, 
two pairs are formed, which reduces the effective topological charge 
in each surface patch. However, the resulting structure is still 
topologically charged. On further decreasing v , additional pairs could 
be formed giving rise to topological neutrality in all patches, which 
is shown in Figure 1d and 2d. In this case, maximal possible number 
of TDs is formed for geometries shown. Note that within our model, 
the free energy of the last structure is metastable with respect to the 
structure possessing eight TDs (i.e. six 1/ 2m = − and two 1/ 2m = −
TDs). In simulations we stabilised it by enforcing 12 TDs (i.e. eight 

1/ 2m = and four 1/ 2m = − 1/ 2m = −  TDs) in the initial »seed« 
configuration. However, the main feature which we aim to emphasize 
is assembling of 1/ 2m = −  antidefects within the neck. Their presence 
is accompanied by strong local fluctuations in orientational ordering 
on microscopic scale. The latter is manifested on mesoscopic scale 
by relatively weak degree of nematic ordering (i.e. essentially melted 
cores of TDs). Consequently, local interactions between nearby 
molecules are effectively weakened, which might result in the neck 
rupture. In such a way, two distinct membranes are formed, whose total 
free energy is lower than that of the structure shown in Figure 1c or 1d. 
This mechanism represents a possible membrane fission realization.
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Conclusions
We demonstrated a possible topological defect driven mechanism 

of membrane fission in simple biological membranes exhibiting 
spherical topology and in-plane ordering. We showed that regions 
possessing negative Gaussian curvature could trigger the formation 
of pairs {defect, antidefect} and those antidefects assemble within 
the catenoid-like neck region. Presence of TDs is associated with 
relatively strong local fluctuations in orientational ordering. These 
weaken effective local intermolecular interactions which could enable 
rupture of the membrane into two independent objects.

In our study, we took into account only the so called intrinsic 
curvature terms in the free energy expression [20]. Such approach 
is used in the majority of theoretical studies, which are based on 
covariant derivatives in expressing free energy elastic terms [3,17,18]. 
However, groups lead by Selinger and Napoli demonstrated that 
extrinsic curvatures terms are in general also present [21-23]. They are 
present if local principal curvatures  { }1 2,C C  differ. The importance 
of this contribution increases with the difference 1 2C C− . In general, 
the extrinsic term favours orientational ordering along the principal 
direction exhibiting smaller curvature. In our case, its contribution 
would be largest within the neck region. Note that the impact of 

1 2C C−  on neck structures was already studied within the so-called 
deviatoric elasticity model [5,24]. The latter considers membranes 
consisting of anisotropic constituents. These studies reveal that 
within the neck, the orientational ordering is increased. Therefore, 
this implies that TDs would assemble just above the neck, which does 
not change the qualitative picture of the proposed mechanism.
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