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Abstract

For individual classes of groups, a relationship is established
between the existence of an algorithm for calculating the index
of a subgroup and the algorithm for solving the problem of
occurrence.
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Introduction
In recent years, difficult algorithmic problems in group theory have

found practical application in cryptography. A difficult or even
algorithmically unsolvable group-theoretic problem can be a reliable
basis for cryptographic protection of the protocol. For cryptographic
applications, the classical problems of Dan (the word problem, the
conjugacy problem and the isomorphism problem) are of interest, and
the algorithmic problems in group theory that are closely related to the
classical ones. Such are the problem of the occurrence and the problem
of the index.

The occurrence problem for a finitely presented group G consists in
finding or proving the impossibility of an algorithm that for any finite
set of elements hi (i = 1, 2, ..., m) and w would know whether or not
the element w belongs to the subgroup H = rp (h1 , h2, ..., hm)
generated by the elements hi. From the algorithmic solvability of the
problem of occurrence follows the solvability of the problem of
equality. Therefore, the problem of occurrence is also called the
generalized equality problem.

The index problem for a finitely presented group G consists in
finding an algorithm that, for any finite set of elements hi (i = 1, 2, ...,
m) of G, would recognize that a finite or infinite index in G has a
subgroup H = gr (h1, h2 , ..., hm) generated by this set.

A finitely generated group contains only a finite number of
subgroups for every given finite index. Therefore, if the problem of
occurrence and the index problem are solvable in G, then having
obtained information that the index of the subgroup H in G is finite, it
is possible to calculate this index in a finite number of steps by a simple
search of subgroups of finite index (for a description of such an
algorithm see, for example, [1 ]).

For a particular group G, computing its order is not a mass problem.
However, if G is infinite, then there are subgroups of infinite and finite
indices. Such indices have, for example, trivial subgroups, but it is

possible that in G there are other subgroups, both finite and infinite
index. If G is an infinite simple finitely presented group, then the
solvability of the index problem follows from the solvability in G of the
occurrence problem, since in this group only one subgroup of finite
index is itself G.

However, the reverse situation with simple groups is more
complicated. It was shown in [2] that every countable group is
isomorphically embeddable in a two-generated simple group. In
particular, a finitely presented group S with an unsolvable problem of
equality (and hence an unsolvable entry problem) is also
isomorphically imbedded in a simple two-generated group G. In each
recursively defined simple group, the word problem is solvable [3].
This means that a two-generated simple group containing such a group
S is not only not definite, it cannot even be recursively represented.

The classical Kronecker-Capelli theorem of linear algebra is
essentially an algorithm for solving the problem of entering into a
subspace of a finite-dimensional vector space. This algorithm consists
in calculating the smallest possible number of elements in the
generating system. This number - dimension - is found by means of a
sequence of changes in the generating set of the subspace and its
transformation into a basis.

To find the index of a finitely generated subgroup H, in the same
way one can find a generating set H consisting of the smallest number
of elements. The generating set of a subgroup is modified by means of
elementary transformations analogous to elementary transformations
of the generating set of a subspace of a vector space:

(1) replacing the element x by x-1;

(2) replacing the element x by an element x y, where x ≠ y;

(3) removal of a single element.

If as a result of such transformations a single element appears, then
this unit from the generating set can be deleted.

Let H = gr (h1, h2, ..., hm) be a finitely generated subgroup of the free
group Fn. A system of free generators for a subgroup H is called a basis,
and the number of elements in a basis is called a rank. This basis is the
Nilsen set of generators see, for example, [4]. Let R be some set of
elements from the free group Fr written in the reduced, that is,
irreducible, form. Elements of the set R are words in the alphabet a1,
a2, ..., ar and their inverses, and abbreviations inside words are
impossible. The symbol R-1 denotes all the inverse elements of R. A
word w in Fr is said to be isolated with respect to the set R if there is at
most one element v in R × R-1 such that w is an initial or terminal
subword for v. The leading beginning of the word v is the initial
subword s of the word v whose length satisfies the inequality� �2 < � � ≤ � �2 + 1.

Similarly, the leading end of the word v is defined.

The set R of non-unitary, incontractible words is said to be Nielsen
if:

1) the older beginnings and the upper ends of all words from R are
isolated;

2) for each word of even length, at least one of its halves - left or
right - is isolated.
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Using the transformations (1) - (3) of the generating set in a finite
number of steps, one can obtain the Nilsen generators for the subgroup
H, and thus find the rank of H. This method of obtaining free
generating subgroups of free is usually called the Nielsen method.

Using the Nielsen method, it is possible in a finite number of steps
to find out whether an element of the free group enters or does not
belong to a given finite generated subgroup, that is, the occurrence
problem for free groups is algorithmically solvable.

Otto Schreyer, using not only the generating elements of a subgroup,
but also representatives of adjacent classes, established a connection
between the index of a subgroup of a free group, the rank of this
subgroup, and the rank of the original free group, see, for example, [4].
If a subgroup H of rank k has finite index in a free non-cyclic group of
rank r, then this index is equal to� − 1� − 1 .

Using the Schreier formula, the index problem of a subgroup of a
free group reduces to calculating the rank of a subgroup, which can be
found using the Nielsen method.

Thus, the index problem for a free group is also algorithmically
solvable.

We call a group G almost free if it contains as a subgroup of finite
index a free non-cyclic group F. If a finitely presented group G is
almost free, then its free subgroup F has finite rank; in addition, we can
assume that F is normal in G.

The solution of both problems under discussion for an almost free
group is reduced to solving this problem for the free part F.

In an almost free group, both the index problem and the problem of
occurrence are solvable.

A free group is a free product of infinite cyclic groups. In an infinite
cyclic group, both problems were algorithmically solvable, and both of
them were inherited under a free product.

Let us now consider another important group-theoretic
construction-the direct product.

Each element of the direct product A × B has a representation in the
form of the product ab, where a × A and b × B.

The element ab is equal to one if and only if a and b are both single.
This means that if the equality problem is algorithmically solvable in
groups A, B, then this problem is solvable in the direct product A×B. In
other words, the solvability of the equality problem is inherited by the
direct product. The solvability of the index problem in such a
construction may not be inherited.

Theorem
In the direct product of two almost free groups, the index problem

is algorithmically unsolvable.

Evidence
Let groups A and B be two almost free groups. The group A

contains, as a normal subgroup of finite index, a free subgroup A1 of
rank m; and the elements a1, a2, ..., am are free generators for A1.
Similarly, the group B contains a normal subgroup B1, where B1 is free

of rank m and b1, b2, ..., bm-ee are its free generators. In addition,
both indices are � : �1 and � : �1 finite.

If the group G = A × B is a direct product of the groups A and B,
then its subgroup G1 generated by the subgroups A1 and B1 forms a
direct product:

G1 = A1 × B1.

The index G1 in G is equal to � : �1  � : �1 ,and is therefore
finite.

We now consider an arbitrary finitely presented group R given by
the representation

R = <r1, r2, …, rk; w1(ri), …, wn(ri) >.,

where r1, r2, ..., rk are generating elements, and w1 (ri), ..., wn (ri)
are defining relations. Recall that the defining relation is a word in the
alphabet r1, r2, ..., rk, �1−1,�2−1,…, ��−1 ...., In the group A1 we choose

a subgroup P of index s in A1 such that inequality� ≥ � − 1�− 1 .
Then by the Schreier formula the rank of the subgroup P is equal to� � − 1 + 1,and this number is not less than k. If the rank of the

subgroup P turns out to be strictly greater than k, then the
representation of the group R is supplemented by s-k generators and
equates these elements to unity. Without loss of generality, we can
assume that this has already been done, that is, s = k.

Let the elements p1, p2, ..., pk freely generate the subgroup P. In the
group B1 we choose a subgroup Q of rank k, of index s in B1 and with
free generators q1, q2, ..., qk.

We now consider two normal subgroups, one in the group P and the
other in Q. In the group P, the normal subgroup N1 generated by the
elements w1 (ri), ..., wn (ri), and in the group Q the normal subgroup
N2 generated by the elements w1 ( qi), ..., wn (qi). More precisely,

N1 = < w1(ri), …, wn(ri) >P;

N2 = < w1(qi), …, wn(qi) >Q.

In the group G1 we take two subgroups:

H1= гр(w1(qi), …, wn(qi), p1q1, …, pkqk);

H2 = гр(w1(pi), …, wn(pi), p1q1, …, pkqk).

The elements ri, qi lie in different direct factors of G1, therefore they
commute:

ri qi = qi ri.

This means that for any word ϕ the equality

ϕ(piqi) = ϕ(pi) ϕ(qi).

The conjugation of the element wj (pi) by means of an element of H1
is equal to the corresponding conjugation by means of an element of
the subgroup A. Hence it follows that the subgroup H1 contains N1.
Similarly, H2 includes N2.

In addition, the subgroups H1 and H2 themselves coincide. Let H =
H1 = H2; then:

H ∩ P = N1;

H ∩ Q = N2.
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The Hasse diagram for the inclusion of subgroups [Figure 1]
represents all the links between all these groups. If the subgroup H has
a finite index in the direct product A × B, then the index H in the
subgroup A1 × B1 is also finite, which means that the indices N1 and
N2 are finite in the subgroups P and Q, respectively. This means that
the group R is finite. Conversely, if the group R is finite, then the
indices N1 and N2 in the subgroups P and Q are also finite; but P and Q
are subgroups of finite index in direct factors, and hence the index is
[G1 :H] finite, and [G :H] therefore also finite.

Figure 1: Hasse Diagram, representing the groups.

In other words, the index problem in the group G is equivalent to
the finiteness problem in the class of all finitely presented groups.

The finiteness problem for groups is algorithmically unsolvable [5],
and, hence, the index problem for a finitely determined group is also
algorithmically undecidable.

The assertion is proved.

Algorithmic unsolvability of the problem means that there is no
machine solution for such a problem. For example, no technique will
ever be able to answer the question, whether a finite or infinite index of
an arbitrarily chosen finitely generated subgroup in the group F2×F2,
given by the representation

< a, b, c, d; aca–1c–1, ada–1d–1, bcb–1c–1, bdb–1d–1 >.

We note that in some cases the calculation of the index of a finitely
generated subgroup in a finitely determined group can be entrusted to
the technique. True, the result can be obtained, as a rule, only in the
case of a finite (and relatively small) index of the subgroup. Computer
calculations of this kind associated with the solution of specific
problems in group theory are presented in [6-9].

For the direct product of two free groups of the second rank, the
problem of occurrence is also unsolvable [10]. The proof of this
assertion in [9], carried out for only one group F2 × F2, is also carried
over to the general case of a direct product of almost free non-cyclic
groups.

Thus, there arises an infinite series of finitely presented groups for
which the occurrence problem and the index problem turn out to be
equivalent - both are undecidable.

On the other hand, in an almost free group both problems: both the
problem of occurrence and the index problem are algorithmically
solvable. It is known that a free product inherits the solvability of the
problem of occurrence [11].

Using Nielsen's method, which was improved by the Moldovan
method [12], it can be shown (see, for example, [1]) that for the
solvability of the index problem in the free product A×B, the
solvability of the occurrence problem in groups is sufficient.

This sufficient condition for the existence of an algorithm that
computes the index of a subgroup is also necessary: If the index
problem is solvable in a nontrivial free product A×B, then the
occurrence problem is solvable in the free factors A and B.

The algorithm from [1] that solves the index problem in the free
product A×B does not use the solvability of the index problem in the
factors A and B. Therefore, the natural question arises: is it true that
the decidability of the index problem in free factors follows the
solvability of the index problem in the free product ?

The converse is also interesting: is it true that the decidability of the
index problem in a free product implies the solvability of the index
problem in free multipliers?

From positive answers to both questions, the following statement
would follow: in the class of finitely presented groups the problem of
occurrence is algorithmically equivalent to the index problem.
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