Can Renalase Enzyme Control the Fate of Parkinson’s and Schizophrenia?

Mustafa Ata Aydin¹ and Suleyman Aydin*²

Editorial

Dopamine is a catecholamine that is involved in the etiopathology of neurodegenerative diseases like Parkinson’s and schizophrenia [1,2]. Parkinson’s disease develops as a result of dopamine deficiency in the glial beds of the brain [1]. Schizophrenia, on the other hand, is characterized by excessive dopamine [2]. The limited number of drugs used in Parkinson’s disease either makes up the dopamine deficiency (L-Dopa), or exercise dopamine-like effects, or prevent the breakdown of dopamine in the brain [1]. Neuroleptics used in the treatment of schizophrenia, on the other hand, act by decreasing the dopamine quantity [3]. In some cases, these neuroleptics reduce the dopamine amounts below the normal physiological level and cause Parkinson’s-like symptoms. Thus, dopamine is a catecholamine which is like a double-edged sword.

This editorial hypothesizes that Parkinson’s and schizophrenia may be associated with the synthesis and release of the renalase enzyme synthesized in many tissues, including the kidneys and the brain in particular [4]. Renalase is an enzyme that catabolizes catecholamines, including dopamine, epinephrine and norepinephrine [4, 5]. Theoretically, excessive renalase synthesis would lead to more catecholamine destruction, resulting in reduced dopamine and Parkinson’s disease. In the reversed situation, when renalase is synthesized below the physiological dose, catecholamines, including dopamine, would be destroyed to a lesser extent, and diseases such as high blood pressure and schizophrenia will develop. Since the formation and destruction of catecholamines depend of the renalase enzyme, designing the drugs used in the treatment of diseases like Parkinson’s and schizophrenia in consideration of this situation can produce more effective results. Molecular weight of renalase is 38 kDa [5]. A molecule as large as this cannot pass through the blood-brain barrier. Therefore, renalase blockers administered through the peripheral route (in Parkinson’s) cannot be effective in schizophrenia. When the renalase-secreting part of the brain is operated on in Parkinson’s disease, renalase synthesis, and therefore renalase-dependent dopamine destruction will be reduced; thus, this can be a new therapeutic alternative in Parkinson’s. In the case of schizophrenia, it may be that renalase-synthesizing renalase cells in the brain which atrophy over time cannot produce renalase and the resulting failure of dopamine destruction leads to schizophrenia.

References


Author Affiliations

¹Private Bilgem College, Elazig, Turkey
²Department of Medical Biochemistry, Firat University, School of Medicine, Elazig, Turkey

Submit your next manuscript and get advantages of SciTechnol submissions

- 80 Journals
- 21 Day rapid review process
- 3000 Editorial team
- 5 Million readers
- More than 5000
- Quality and quick review processing through Editorial Manager System

Submit your next manuscript at www.scitechnol.com/submission