Appendix — A
Correlation function determination via expansion of fluctuations into the Fourier series

If the averaged value of T is found, we can calculate the related fluctuations: 7' (x, v,2)=T (x,y,2) — <T > .

Let us expand the fluctuation into the Fourier series. We have
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Here, N X2 N yo and N  are the chosen number of harmonics for each coordinate. Lx’ Ly , and LZ are the

maximum values of x, y, and z.

The correlation function <T'T'> takes the form
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Another representation of (A.1) is as follows
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Expression (A.2) can be also written in such a form. In this case, (A.3) contains integrals having the form
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[explia(x, = x/ 2) exp( —ia(x, +x/2))dx,, (A6)
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Integrals of type (A.5), (A.8), and (A.9) are zero. This is also the case for integrating over y and z. Integrals (A.6)

and (A.7) equal 1 at & = & and O for other cases.

This means that the expression for correlation function <T'T'> has the form
<TT>=ZZZf,W Pop, SXplioX+ify+iyz), (A.10)
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Where (9 ofy is the complex conjunction to the coefficient waﬁ}/ .

Any correlation function can be found by formula similar to (A.10).
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