International Publisher of Science, Technology and Medicine

 
 
Share this
 
 
 
Track Your Manuscript
 
 
 
 
JRGM now associated with
Journal of Regenerative Medicine
Editor-in-chief: Ian K. McNiece, PhD
The University of Texas MD Anderson Cancer Center, USA  View all
ISSN: 2325-9620
Frequency: Quarterly
 
Journal of Regenerative Medicine (JRGM) is a peer-reviewed scholarly journal and aims to publish the most complete and reliable source of information on the discoveries and current developments in the mode of original articles, review articles, case reports, short communications, etc. in all areas of regenerative medicine and making them available online freely without any restrictions or any other subscriptions to researchers worldwide.
 
Journal of Regenerative Medicine focuses on the topics include regenerative medicine therapies, stem cell applications, tissue engineering, gene and cell therapies and tissue regeneration.
 
The Journal is using Editorial Manager System for quality in review process. Editorial Manager is an online manuscript submission, review and tracking systems. Review processing is performed by the editorial board members of Journal Regenerative Medicine or outside experts; at least two independent reviewers approval followed by editor approval is required for acceptance of any citable manuscript. Authors may submit manuscripts and track their progress through the system, hopefully to publication. Reviewers can download manuscripts and submit their opinions to the editor. Editors can manage the whole submission/review/revise/publish process.
 
Interested authors can submit manuscript through Online Submission System or Editorial Manager or send as an e-mail attachment to the Editorial Office at editor.jrgm@scitechnol.com or editor.jrgm@scitechnol.org
 
Journal of Regenerative Medicine is organizing & supporting 3rd International Conference on Tissue Science & Regenerative Medicine during September 24-26, 2014 Valencia, Spain with the theme of Breakthrough Strategies for Tissue Engineering, Repair & Regeneration.

 

 
Current Issue
Chromatin Topology and Long- Range Genomic Interactions   Editorial
Badam Enkhmandakh and Dashzeveg Bayarsaihan
J Regen Med 2013, 2:2    doi: 10.4172/2325-9620.1000e106
 Preview

Chromatin Topology and Long- Range Genomic Interactions

The ability to reprogram somatic cells to pluripotency provides both potential opportunities for regenerative medicine, as well as an intriguing model for studying cell reprogramming. Although the generation of viable cloned mammals from adult cells is technically feasible, knowledge of such processes as chromatin reorganization, genome activation, and epigenetic modifications is necessary to gain a more thorough understanding of gene regulatory networks that govern nuclear programming. Chromatin architecture and genome wide interactions are not only altered during the transition from a somatic to a pluripotent state, but also play active, regulatory roles during differentiation and cell fate commitment.

|  Full Text |   PDF   
2-D Graphene and Derivatives- Based Scaffolds in Regenerative Medicine: Innovative Boosters Mimicking 3-D Cell Microenvironment   Editorial
Farid Menaa
J Regen Med 2013, 2:2    doi: 10.4172/2325-9620.1000e107
 Preview

2-D Graphene and Derivatives- Based Scaffolds in Regenerative Medicine: Innovative Boosters Mimicking 3-D Cell Microenvironment

Regenerative medicine represents a multi-disciplinary medical area of increasing interest due to the major progress in cell and organ transplantations, as well as advances in biomaterials science and bioengineering. In 1993, Langer and Vacanti proposed the combined use of stem cells (SCs), nanomaterials-based scaffolds, and inductive factors as the basis for regenerative medicine (RM). Since then, researchers have been able to fabricate increasingly complex tissue/organ constructs, some of them are even used in clinics today as standard treatment for a variety of conditions (e.g. bone reconstruction).

|  Full Text |   PDF   
Targeted MicroRNA Interference Promotes Postnatal Cardiac Cell Cycle Re-Entry   Research Article
Yiqiang Zhang, Noriko Matsushita, Tamar Eigler and Eduardo Marbán
J Regen Med 2013, 2:2    doi: 10.4172/2325-9620.1000108
 Preview

Targeted MicroRNA Interference Promotes Postnatal Cardiac Cell Cycle Re-Entry

Mammalian heart cells undergo a marked reduction in proliferative activity shortly after birth, and thereafter grow predominantly by hypertrophy. Our understanding of the molecular mechanisms underlying cardiac maturation and senescence is based largely on studies at the whole-heart level. Here, we investigate the molecular basis of the acquired quiescence of purified neonatal and adult cardiomyocytes, and use microRNA interference as a novel strategy to promote cardiomyocyte cell cycle re-entry. Expression of cyclins and cyclin-dependent kinases (CDKs) and positive modulators were down-regulated, while CDK inhibitors and negative cell cycle modulators were up-regulated during postnatal maturation of cardiomyocytes. The expression pattern of microRNAs also changed dramatically, including increases in miR- 29a, miR-30a and miR-141. Treatment of neonatal cardiomyocytes with miRNA inhibitors anti-miR-29a, anti-miR-30a, and antimiR- 141 resulted in more cycling cells and enhanced expression of Cyclin A2 (CCNA2). Thus, targeted microRNA interference can reactivate postnatal cardiomyocyte proliferation.

|  Full Text |   PDF    Supplementary File
Regenerative Potential of Stem Cells for Duchenne Muscular Dystrophy   Commentary
Dario Siniscalco and Nataliia Sych
J Regen Med 2013, 2:2    doi: 10.4172/2325-9620.1000109
 Preview

Regenerative Potential of Stem Cells for Duchenne Muscular Dystrophy

Duchenne muscular dystrophy (DMD) is a childhood, severe, X-chromosome linked neuromuscular disorder, affecting 1:3500 male births. It is characterized by mutations in the dystrophin gene, leading to the alteration of the open reading frame and consequently to the loss of dystrophin protein synthesis. The muscular degeneration of muscle fibres causes progressive damage leading to death. Currently, there is no curative treatment for DMD [4], as this disorder can be considered an untreatable fatal disease. Novel therapeutical approaches have been proposed in the last years. Among them, gene replacement theory has gained substantial attention. Targeted exon-skipping through RNA to exclude specific sites of RNA splicing, or with antisense oligonucleotides can induce the restoring of the open reading frame and the production of a functional, even if smaller, dystrophin protein.

|  Full Text |   PDF   
 
Ovarian Club IV Meeting