Journal of Regenerative Medicine ISSN: 2325-9620

About Tissue Repair and Regeneration

The cellular and molecular mechanisms underpinning tissue repair and its failure to heal are still poorly understood, and current therapies are limited. Poor wound healing after trauma, surgery, acute illness, or chronic disease conditions affects millions of people worldwide each year and is the consequence of poorly regulated elements of the healthy tissue repair response, including inflammation, angiogenesis, matrix deposition, and cell recruitment. Failure of one or several of these cellular processes is generally linked to an underlying clinical condition, such as vascular disease, diabetes, or aging, which are all frequently associated with healing pathologies. The search for clinical strategies that might improve the body’s natural repair mechanisms will need to be based on a thorough understanding of the basic biology of repair and regeneration.

Tissue engineering frequently involves cells and scaffolds to replace damaged or diseased tissue. It originated, in part, as a means of effecting the delivery of biomolecules such as insulin or neurotrophic factors, given that cells are constitutive producers of such therapeutic agents. Thus cell delivery is intrinsic to tissue engineering. Controlled release of biomolecules is also an important tool for enabling cell delivery since the biomolecules can enable cell engraftment, modulate inflammatory response or otherwise benefit the behavior of the delivered cells. We describe advances in cell and biomolecule delivery for tissue regeneration, with emphasis on the central nervous system (CNS).

One of the major challenges in the field of regenerative medicine is how to optimize tissue regeneration in the body by therapeutically manipulating its natural ability to form scar at the time of injury or disease. It is often the balance between tissue regeneration, a process that is activated at the onset of disease, and scar formation, which develops as a result of the disease process that determines the ability of the tissue or organ to be functional. Using biomaterials as scaffolds often can provide a “bridge” for normal tissue edges to regenerate over small distances. Larger tissue defect gaps typically require both scaffolds and cells for normal tissue regeneration to occur without scar formation. Various strategies can help to modulate the scar response and can potentially enhance tissue regeneration. Understanding the mechanistic basis of such multivariate interactions as the scar microenvironment, the immune system, extracellular matrix, and inflammatory cytokines may enable the design of tissue engineering and wound healing strategies that directly modulate the healing response in a manner favorable to regeneration.

High Impact List of Articles

Relavant Topics

Recommended Conferences

Share This Page