Journal of Regenerative Medicine ISSN: 2325-9620

Reach Us +18507546199
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Chromatin Topology and Long- Range Genomic Interactions

Chromatin Topology and Long- Range Genomic Interactions

The ability to reprogram somatic cells to pluripotency provides both potential opportunities for regenerative medicine, as well as an intriguing model for studying cell reprogramming. Although the generation of viable cloned mammals from adult cells is technically feasible, knowledge of such processes as chromatin reorganization, genome activation, and epigenetic modifications is necessary to gain a more thorough understanding of gene regulatory networks that govern nuclear programming. Chromatin architecture and genome wide interactions are not only altered during the transition from a somatic to a pluripotent state, but also play active, regulatory roles during differentiation and cell fate commitment.

Special Features

Full Text

View

Track Your Manuscript

Share This Page

Media Partners

Associations