GET THE APP

Green’s Function of the Wave Equation for a Fractured Dissipative HTI Medium Taking the Viscoelasticity of the System into Account | SciTechnol

Journal of Physics Research and Applications.

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Research Article, J Phys Res Appl Vol: 4 Issue: 1

Green’s Function of the Wave Equation for a Fractured Dissipative HTI Medium Taking the Viscoelasticity of the System into Account

   

Abstract

In this paper we derive the Green’s function of the wave equation for a fractured dissipative HTI medium. Inside the fractures there is a viscous fluid which adds to the attenuation of the wave. Previous works have been done for the elastic medium where the stiffness tensor have all real components. In this scenario the host rock and the fluid inside the fractures both have viscoelastic properties. Thus, complex terms in the stiffness tensor has been introduced to account for this viscoelasticity. Finally, we arrive to a Green Christoffel type of equation with additional complex terms due to the introduction of viscoelasticity. We then perform a Fourier Transform to solve for the Green’s function and finally an Inverse Fourier Transform to obtain the Green’s function in (x,t) space. This Green’s function can be used to determine how a wave passing through a viscoelastic layer (e.g. hydrocarbon layer) is changed after passing through it. Thus, in turn it can be used to detect hydrocarbon layers. 

Keywords: Green’s function; Wave equation; Viscoelasticity

Track Your Manuscript