Journal of Womens Health, Issues and Care ISSN: 2325-9795

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Analysis of Risk Factors of Gestational Diabetes Mellitus (GDM) Using Data Mining

Diabetes is the common chronic disease and a major health challenge in all population. Gestational diabetes mellitus (GDM) is a type of diabetes developed in women at the time of pregnancy. We present a Data mining (DM) approach to identify the risk factors of Gestational diabetes mellitus (GDM) using different data mining techniques. Dataset used for analysis contains the details of the pregnant women admitted the local hospital of Mysuru, India. The data mining techniques used are k-means clustering, J48 Decision Tree, Random-Forest and Naive-Bayes classifier. Classification accuracy is enhanced by using feature subset selection wrapper approach. Data imbalanced problem is handled by using Synthetic Minority Over-sampling Technique (SMOTE). The performances of the algorithms have been measured and compared in terms of Accuracy.

Special Features

Full Text


Track Your Manuscript

Scheduled supplementary issues

View More »

Media Partners