GET THE APP

Isolation and Characterization of Bacteriophages from Wastewater Sources on Enterococcus spp. Isolated from Clinical Samples

Journal of Virology & Antiviral Research.ISSN: 2324-8955

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Isolation and Characterization of Bacteriophages from Wastewater Sources on Enterococcus spp. Isolated from Clinical Samples

Due to dramatic increases in bacterial antibiotic resistance in recent decades, use of antibiotics to treat infections is not thoroughly effective. A group of these bacteria, enterococci, are highly resistant to common antibiotics, especially vancomycin. Therefore, researchers have used bacteriophages, as drug alternatives, to treat bacterial infections resistant to multiple antimicrobials. The most important reasons for using bacteriophages to treat antimicrobial-resistant strains include relative safety of the bacteriophages compared to chemical antimicrobials, zero or low resistance of the bacterial strains to their host-specific bacteriophages and ineffectiveness of the bacteriophages on eukaryotic cells. Thus, the major aims of this study were to isolate and identify bacteriophages of municipal wastewaters on antibiotic-resistant clinical enterococci. After isolation of the bacteriophages, their efficiency on various enterococcal species was investigated. In general, three bacteriophages were isolated, including those of Myoviridae, Siphoviridae and Inoviridae families, which were isolated on an Enterococcus faecium strain. The bacterial strain was partially sequenced and further studied using transmission electron microscopy. In conclusion, bacteriophages can be isolated from biological sources. The bacterial viruses are suggested as viable alternatives to antimicrobials because of the current bacterial multiple resistance to these biochemical agents. Further studies are necessary to verify effects of bacteriophages on multiple resistant pathogens

Special Features

Full Text

View

Track Your Manuscript

Media Partners

Associations