Journal of Applied Bioinformatics & Computational BiologyISSN: 2329-9533

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

A Review on Recent Statistical Models for RNA-Seq Data

The next generation sequencing technology, RNA-sequencing (RNA-seq), has got growing acceptance in transcriptome analyses. Statistical methods used for gene expression analyses with RNAseq provide meaningful inferences of gene expression using counts of reads. There are various statistical models with its pros and cons available for RNA-seq data analysis. There is a need for consistent statistical methods to explore the information from the developing sequencing technologies. The current article gives a review of the statistical methods with their limitations that can be useful for the RNA-seq analysis. The main emphasis is given to the parametric, nonparametric and hybrid models for identifying the genes with differential expression.

Special Features

Full Text

View

Track Your Manuscript

Share This Page

Media Partners

Associations