Geoinformatics & Geostatistics: An OverviewISSN: 2327-4581

Reach Us +1 850 900 2634
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Suitability of Markov Random Field-Based Method for Super-Resolution Land Cover Mapping

Suitability of Markov Random Field-Based Method for Super-Resolution Land Cover Mapping

Super-resolution mapping (SRM) works by dividing the coarse pixel into sub-pixels and assign the class proportion estimated by subpixel classification to each corresponding sub-pixels then the class labelling is optimized based on the principle of spatial dependency. Among the existing SRM techniques Markov random field (MRF)-based SRM is one of the most recently introduced technique. This study attempts to assess the suitability of the technique for superresolution land cover mapping.

Special Features

Full Text

View

Track Your Manuscript

Share This Page

Media Partners

Associations