Journal of Pharmaceutics & Drug Delivery ResearchISSN: 2325-9604

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Synthesis and Analysis of Electrically Sensitive Hydrogels Incorporated with Cancer Drugs

Synthesis and Analysis of Electrically Sensitive Hydrogels Incorporated with Cancer Drugs

Abstract

Electric-field sensitive hydrogels are of great interest for many researchers from the aspects of their usage in several biomaterials applications. Controllable drug release under various voltages offers huge benefits for the controlled drug delivery systems. Electrically sensitive polyvinyl alcohol (PVA) hydrogels loaded with methotrexate (MTX) and other compounds were prepared via a solution casting process, and characterized through various techniques. In order to determine if the hydrogels were electro-sensitive or not, bending tests were conducted on the sulfoacetic acid modified hydrogels. It was observed that the prepared samples into strip forms started bending towards the cathode, and this bending was reversible when the polarity of the applied voltage was changed. The drug release study was performed on the MTX-loaded hydrogel strips placed in a sodium chloride (NaCl) solution under three different voltages (e.g., 0V, 5V, 10V, and 20V). Subsequently, the solutions were collected every five minutes in order to determine the drug release behaviors of the hydrogels using an ultraviolet-visible (UV-Vis) spectrophotometer. The test results showed that sulfoacetic acid (SA)-modified PVA hydrogels possess electrical sensitive behavior and kept their electric sensitivity for a long period of time. Also, the results confirmed that the control drug release could be achieved under different electrical voltages. MTT assay results has provided insight about viability of MDA-486 and L-929 cells in the presence of the hydrogels made, also confirmed the results obtained from UV-Vis test.

Special Features

Full Text

View

Track Your Manuscript

Media Partners

GET THE APP