Journal of Athletic EnhancementISSN: 2324-9080

Reach Us +18507546199
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

The Influence of Self-Myofacial Release on Countermovement Jump Force-Time Variables in Pre-Elite Academy Rugby Union Players

Objectives: The aim of this study was to examine the influence of a 10 min lower-body self-myofascial release (SMFR) protocol on countermovement jump (CMJ) performance and CMJ forcetime variables in pre-elite Rugby Union players, and to assess if differences exist between groups; forwards vs. backs.

Design: Pre-elite male Rugby Union academy players (n=20) volunteered for the study and were categorized as forwards (FWD) or backs (BK). Testing occurred in a sequenced mixed design involving TEST (repeated; Control vs. SMFR) and GROUP (FWDvs. BK).

Methods: Irrespective of player position, all subjects completed baseline assessments consisting of dynamic warm-up (DYN) and 6 CMJs, followed by 20 min complete rest, then 10 min lower-body SMFR protocol, and subsequent DYN and CMJ re-test. Participants performed the SMFR exercises to 9 various sites over the lower extremities on both sides of the body. The data from the best 3 jumps relative to jump height were averaged and used for analysis.

Results: The SMFR had no significant effect on CMJ height for GROUP (p=0.139). Significant differences in concentric force were found for GROUP (p=0.004) and TEST (p=0.04). For eccentric rate of force development (RFD) there was a significant effect for TEST (p=0.008). For concentric impulse there was a significant difference for GROUP (p=0.016).

Conclusion: The SMFR protocol combined with DYN affected CMJ force-time variables positively without deteriorating jump height in pre-elite academy Rugby Union players. Strength and conditioning coaches can prescribe SMFR with DYN prior to training and competition in Rugby Union to enhance force production capabilities in dynamic multi-joint movements without negatively affecting an individual performance.

Special Features

Full Text

View

Track Your Manuscript

Share This Page

Media Partners

Associations