Journal of Applied Bioinformatics & Computational BiologyISSN: 2329-9533

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Molecular and Phylogenetic Analysis of Inducible Nitric Oxide Synthase among Different Organisms Molecular and Phylogenetic Analysis of Inducible Nitric Oxide Synthase among Different Organisms

Nitric Oxide (NO) is a hetero-nuclear diatomic molecule which is formed from L-arginine through catalytic activity of Nitric Oxide Synthase (NOS). NO is an important messenger molecule known to be involved in dilation of smooth muscles, penile erection, synaptic plasticity. The three isoforms of NOS are nNOS (neuronal NOS), iNOS (inducible NOS), and eNOS (endothelial NOS). The iNOS is coded by NOS2 gene and is known to play an important role in body’s immune response involving inflammatory response, leukocyte mediated microbial destruction. In this study the iNOS sequences was compared among 18 organisms from arthropods to mammals including bacteria. To understand the implication of iNOS the domain as well as phylogenetic analysis was done. The various biochemical, physico-chemical, and nearly two possible transmembrane models were predicted to know more about the functional regions and structural features of iNOS. One deleterious SNP was predicted through literature survey which is known to have harmful impact on the function of protein and may be used for genomic association studies. The 14 different Post-translational Modifications (PTMs) were predicted which might play an important role in influencing protein interaction network. Nearly 8 Transcription Factors (TFs) were predicted in mouse and rat which may directly influence the NOS2 expression. Using different in silico methods we actually made a comparative analysis of the different parameters of iNOS to deeply understand more of its regulatory activities. In conclusion, results obtained from this study may be used to create a link between the regulations of iNOS in various organisms and in future the results might be exploited for the clinical trials to regulate various autoimmune disorders.

Special Features

Full Text

View

Track Your Manuscript

Media Partners

GET THE APP