Journal of Addictive Behaviors,Therapy & RehabilitationISSN: 2324-9005

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Intermittent Access To Ethanol Induces Escalated Alcohol Consumption In Primates

Background: Escalation of voluntary alcohol drinking is characteristic of alcohol addiction and can be induced in rodents using intermittent access to alcohol. This model has been used to evaluate candidate therapeutics, but key systems involved in the transition into alcohol addiction, such as CRF, differ in their organization between rodents and primates. We examined the ability of an intermittent access schedule to induce escalation of voluntary alcohol drinking in non-human primates and used this model to assess the role of corticotropin releasing hormone (CRF) signaling in this process.

Methods: Four young adult male rhesus macaques were given access to an 8.4% alcohol solution every other weekday (EOD; M, W, F), while four other young adult males were given the same solution every weekday (ED; M-F). Subjects were then administered a CRF1 antagonist, antalarmin.

Results: EOD increased alcohol intake by up to 50% over baseline, with a more pronounced increase immediately following reintroduction of alcohol. For the morning/daytime sessions, EOD subjects increased their consumption by 83% over baseline. Differences between ED and EOD schedules emerged quickly, and EOD-induced escalation resulted in pharmacologically active BAC’s. EOD-induced alcohol consumption was insensitive to CRFR1 blockade by antalarmin, but subjects with high CSF levels of CRF were more responsive.

Conclusions: Similar to what has been observed in rodents, intermittent access results in an escalation of voluntary alcohol drinking in non-human primates. In contrast to findings in rats, recruitment of the CRF system does not seem to be involved in the escalated alcohol drinking observed under these conditions, though individual differences in CRF system activity may play a role.



Special Features

Full Text


Track Your Manuscript

Media Partners