Journal of Nuclear Energy Science & Power Generation TechnologyISSN: 2325-9809

Reach Us +1 850 754 6199
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Beta Induced Bremsstrahlung Shielding Parameters in Al-Based Glassy Alloys

Beta radiation is discharged during the nuclear reactions. This beta radiation connects with the protecting materials and results optional radiation, for example, bremsstrahlung. Shielding parameters of beta-prompted bremsstrahlung in amalgams are imperative in the field of radiation protecting. We have studied the bremsstrahlung efficiency, bremsstrahlung dose rate, probability of energy loss by beta during bremsstrahlung emission and specific bremsstrahlung constant of the beta of end point energy ranges from 0.4 MeV to 5MeV in some Al-based glassy alloys as Al86Y7Ni5Co1Fe0.5Pd0.5, Al85Y8Ni5Co1Fe0.5Pd0.5, Al84Y9Ni4Co1.5Fe0.5Pd1, Al80Y13Ni5Co1Fe0.5Pd0.5, Al70Y23Ni5Co1Fe0.5Pd0.5 and Al60Y33Ni5Co1Fe0.5Pd0.5. We have compared the shielding properties among the studied different Al-based glassy alloys and that of stainless steel. The efficiency, intensity and dose rate of Bremsstrahlung increses with maximum energy of beta nuclide (Emax) and modified atomic number (Zmod). The specific bremsstrahlung constant in Al-based glassy alloys are also evaluated. The studied the bremsstrahlung shielding parameters such as bremsstrahlung efficiency, probability of energy loss by beta during bremsstrahlung emission and specific bremsstrahlung constant values are smaller in the Al-based glassy alloy Al86Y7Ni5Co1Fe0.5Pd0.5 than the other alloys. This means bremsstrahlung production is less in this alloy. This alloy may be used as substitute for stainless steel.

Special Features

Full Text

View

Track Your Manuscript

Share This Page

Media Partners

Associations