Journal of Nuclear Energy Science & Power Generation TechnologyISSN: 2325-9809

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Research Article, J Nucl Ene Sci Power Generat Technol Vol: 5 Issue: 4

Preferential Water Ingress into a Dry Spent Fuel Cask

Mosebetsi J Leotlela1,2*, Eugene Taviv3 and Zama Mkhize4
1School of Physics, University of the Witwatersrand, Johannesburg, South Africa
2Regulations and Licensing, Koeberg Operating Unit, Eskom Enterprises Park, Sunninghill, Johannesburg, South Africa
3ASARA Consultants (Pty) Ltd, 903 Oxmoor Street, Kyalami Estate, Kyalami, Johannesburg, South Africa
4Reporting Assurance and Systems, Eskom Environmental Management, Megawatt Park, Sunninghill, Johannesburg, South Africa
Corresponding author : Mosebetsi J Leotlela
School of Physics, University of the Witwatersrand, Johannesburg, South Africa
E-mail: [email protected]
Received: June 08, 2016 Accepted: June 20, 2016 Published: June 24, 2016
Citation: Leotlela MJ, Taviv E, Mkhize Z. (2016) Preferential Water Ingress into a Dry Spent Fuel Cask. J Nucl Ene Sci Power Generat Technol 5:4.doi:10.4172/2325-9809.1000159

Abstract

Water ingress into a fissile system, such as may occur during transportation of spent fuel casks, or in storage casks, may result in a significant increase in the keff of that system, which, if it were not accounted for in the abnormal operating or accident analysis of the cask, could potentially result in an inadvertent nuclear excursion with severe nuclear and radiological consequences.

This paper will provide the results of an analysis of a gradual increase in water level in spent fuel casks and will discuss the way the keff of the system responds to such an increase. It will also provide the results of a preferential water ingress analysis, which sought to answer the question that if there is change in the keff of the system accompanied by a fractional increase in the amount of water in the cask, which one of the four water ingress pathways/channels would have the greatest effect on the keff. The water ingress pathways in question, and their respective unit numbers in brackets, are fuel rod (Unit 1), burnable poison rod (Unit 2), instrumentation tube (Unit 3) and cask air gap (Unit 9). This analysis will also determine which of the four channels has the highest sensitivity coefficient and will compare the effects of material composition on the keff when water is either freshwater or seawater.

Keywords: Water ingress; Direct perturbation; Sensitivity of keff to water ingress; Sensitivity coefficient; Axial profile; Preferential water ingress

Track Your Manuscript

Share This Page

Media Partners